## CS 3630!

Lecture 9:
A Vacuum Cleaning Robot: Inference in Factor Graphs

## Lecture 8 recap

For our vacuum robot, we looked at

- Simple sensing
- (Dynamic) Bayes Nets
- HMMs as a special case
- Most probable explanation (MPE)
- Factor graphs


## Vacuuming robot sensor

- A single sensor that detects light levels, and returns a measurement $z$ :
- Bright, $z=2$
- Medium, $z=1$
- Dark, $z=0$

| X1 | dark | medium | light |
| ---: | :---: | :---: | :---: |
| Living Room | 0.1 | 0.1 | 0.8 |
| Kitchen | 0.1 | 0.1 | 0.8 |
| Office | 0.2 | 0.7 | 0.1 |
| Hallway | 0.8 | 0.1 | 0.1 |
| Dining Room | 0.1 | 0.8 | 0.1 |



- Sun is to the south, so plenty of light for living room and kitchen.
- Office and Dining room are poorly lit via windows.
- Hallway has no windows and is always dark.
- For Hallway, $(z=0 \mid H)=0.8$, MLE will do the job!
- For $z=1, z=2$, there's really no way to uniquely identify state from one measurement.


## The Magic of Bayes Nets

For a Bayes net with variables $X_{1} \ldots X_{n}$, the joint distribution is
 given by:

$$
P\left(X_{1} \ldots X_{n}\right)=\prod_{i} P\left(X_{i} \mid \mathcal{P}\left(X_{i}\right)\right)
$$

where $\mathcal{P}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)$ denotes the set of parents of node $\boldsymbol{X}_{\boldsymbol{i}}$

For this specific network, the joint distribution is given by

$$
P(W, X, Y, Z)=P(W \mid X, Z) P(X \mid Y, Z) P(Y \mid Z) P(Z)
$$

## Dynamic Bayes Nets

- Bayes nets can be used to represent systems that evolve over time.
- Our vacuum cleaning robot is an example of such a system, at any time $t$, we have $x_{t}$ and $a_{t}$ and together, these determine (probabilistically) what happens for $x_{t+1}$.
- A dynamic Bayes net has a simple structure that repeats at each time step:



## Hidden Markov Models (HMMs)

- Notice that in the system shown below,
- we know $Z_{t}=z_{t}$ for all $t$
- We know $a_{t}$ for all $t$
- We do not know any of $\boldsymbol{X}_{\mathbf{0}} \ldots \boldsymbol{X}_{\mathbf{1}}$, but we do know that the states form a Markov chain.
- We say that the states, $X_{0} \ldots X_{n}$, are hidden.


HMMs are a good model for speech recognition systems:

- Spoken words behave like a Markov chain (if you know the current word, you know a lot about what will be the next word).
- Measurements are audio signals.

Note: If we increase the relevant history, e.g., so that state $X_{t}$ depends on $X_{t-1}, X_{t-2} \ldots X_{t-n}$, we have an nth order Markov chain. Larger $n$ gives better prediction.

## Most Probable Explanation

We are given $Z_{t}=z_{t}$, and $a_{t}$ for all $t$.

For every possible value of $x_{0}, \ldots, x_{n}$, compute

$$
\boldsymbol{P}(X, Z, A)=\boldsymbol{P}\left(\mathbb{Z}_{0}=\mathbb{Z}_{0} \mid X_{0}=x_{0}\right) \boldsymbol{P}\left(X_{0}=x_{0}\right) \prod_{i} \boldsymbol{P}\left(\mathbb{Z}_{i}=z_{i} \mid X_{i}=x_{i}\right) \boldsymbol{P}\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}, a_{i}\right)
$$

Our estimate is given by

$$
X^{*}=\arg \max _{X} P(X, Z, A)
$$

Not the most efficient algorithm, but in principle, this gets the job done.

## Inference in Factor Graphs

We take an HMM, modeled as a Bayes net. We would like to do MPE as well as full Bayesian inference.

We already know a naïve algorithm for this: bruteforce enumeration of the posterior.
When we remove all variables that are given to us we obtain a factor graph.
$>$ The factor graph is a great tool to exploit the sparse model structure to obtain computationally efficient inference algorithms.

## Factor Graphs



- Measurements are given - get rid of them!

$$
P(\mathcal{X} \mid \mathcal{Z}) \propto P\left(X_{1}\right) L\left(X_{1} ; z_{1}\right) P\left(X_{2} \mid X_{1}\right) L\left(X_{2} ; z_{2}\right) P\left(X_{3} \mid X_{2}\right) L\left(X_{3} ; z_{3}\right)
$$

- This becomes:

$$
\phi(\mathcal{X})=\phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right) \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right)
$$

Each factor defines a function $\phi$ which is a function only of its (non-factor node) neighbors.

## General definition of Factor graphs



- Bipartite graph of variables and factors

$$
\phi(\mathcal{X})=\prod_{i} \phi_{i}\left(\mathcal{X}_{i}\right)
$$

- Each $\mathcal{X}_{i}$ is the subset of variables connected to factor $\phi_{i}$

Subsets here are:

$$
\begin{aligned}
\mathcal{X}_{1} & =\left\{X_{1}\right\} \\
\mathcal{X}_{2} & =\left\{X_{1}\right\} \\
\mathcal{X}_{3} & =\left\{X_{1}, X_{2}\right\} \\
\mathcal{X}_{4} & =\left\{X_{2}\right\} \\
\mathcal{X}_{5} & =\left\{X_{2}, X_{3}\right\} \\
\mathcal{X}_{6} & =\left\{X_{3}\right\}
\end{aligned}
$$

## Example

$P(\mathcal{X} \mid \mathcal{Z}) \propto P\left(X_{1}\right) L\left(X_{1} ; z_{1}\right) P\left(X_{2} \mid X_{1}\right) L\left(X_{2} ; z_{2}\right) P\left(X_{3} \mid X_{2}\right) L\left(X_{3} ; z_{3}\right)$


$$
\phi(\mathcal{X})=\phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right) \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right)
$$



## Factor Graphs in GTSAM

- See
https://www.roboticsbook.org/S34_vacuum_perception.html\#factor-graphs-in-gtsam

```
show(graph)
```



## Computing with Factor Graphs

- Can evaluate for any X: $\phi\left(X_{1}, X_{2}, X_{3}\right)=\prod \phi_{i}\left(\mathcal{X}_{i}\right)$
- Hence, naïve MPE is also simple, e.g.:

```
mpe_value = 0
mpe_trajectory = None
for x1 in vacuum.rooms:
    for x2 in vacuum.rooms:
        for x3 in vacuum. rooms:
        trajectory = VARIABLES.assignment({X[1]: x1, X[2]: x2, X[3]: x3})
        value = graph(trajectory)
        if value > mpe_value:
            mpe_value = value
            mpe_trajectory = trajectory
print(f"found MPE solution with value {mpe_value:.4f}:")
pretty(mpe_trajectory)
found MPE solution with value 0.3277:
\begin{tabular}{rr} 
Variable & value \\
\hline X1 & Hallway \\
X2 & Dining Room \\
X3 & Kitchen
\end{tabular}
```


## Max-Product for MPE

- We can "eliminate" one variable at a time, e.g., $X_{1}$ :

$$
\begin{aligned}
\max _{\mathcal{X}} \prod \phi_{i}\left(\mathcal{X}_{i}\right) & =\max _{X_{1}, X_{2}, X_{3}} \quad \phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right) & & \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right) \\
& =\max _{X_{2}, X_{3}}\left\{\max _{X_{1}} \phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right)\right\} & & \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right) \\
& =\max _{X_{2}, X_{3}} \tau\left(X_{2}\right) & & \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right)
\end{aligned}
$$

- The new quantity $\tau\left(X_{2}\right)$ is no longer a function of $X_{1}$, as for any given value of $X_{2}$ we "memoize" the maximum value of the product of three factors that involve $X_{1}$.
- We eliminated $X_{1}$ !!!!


## A graphical elimination game

- We can represent the elimination of $X_{1}$ graphically:

$$
\phi\left(X_{1}, X_{2}\right)=\phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right)
$$



$$
g_{1}\left(X_{2}\right)=\arg \max _{x_{1}} \phi\left(x_{1}, X_{2}\right) \quad \tau\left(X_{2}\right)=\max _{x_{1}} \phi\left(x_{1}, X_{2}\right)
$$

## A graphical elimination game

- We then recurse on the new, smaller factor graph by eliminating $X_{2}$ :



## A graphical elimination game

- And finally, we eliminate $X_{3}$ :

$g_{3}(\varnothing)$


## Max-Product Revisited

- We decide on an elimination ordering, then for every elimination step we calculate a product and a maximization:

```
MaxProductHMM ( \(\Phi_{1: n}\) ):
    - for \(j=1\)... \(n\) :
    - \(g_{j}\left(X_{j+1}\right), \Phi_{j+1: n} \leftarrow\) CreateLookupTable \(\left(\Phi_{j: n}, X_{j}\right)\)
    - return \(g_{1}\left(X_{2}\right) g_{2}\left(X_{3}\right) \ldots g_{n}(\emptyset)\)
CreateLookupTable ( \(\Phi_{j: n}, X_{j}\) ):
    - Remove all factors \(\phi_{i}\left(\mathcal{X}_{i}\right)\) that contain \(X_{j}\)
    - Form the product factor \(\phi\left(X_{j}, X_{j+1}\right) \leftarrow \prod_{i} \phi_{i}\left(\mathcal{X}_{i}\right)\)
    - Eliminate \(X_{j}: g_{j}\left(X_{j+1}\right), \tau\left(X_{j+1}\right) \leftarrow \phi\left(X_{j}, X_{j+1}\right)\)
    - Add new factor \(\tau\left(X_{j+1}\right)\) back into the graph \(\Phi_{j+1: n}\)
    - return the lookup table \(g_{j}\left(X_{j+1}\right)\) and reduced graph \(\Phi_{j+1: n}\)
```


## Back-substitution

- At the end, we recover the MPE value, but what about the MPE assignment of $X$ ?
- Lookup tables $g()$ to the rescue

MaxProductHMM ( $\Phi_{1: n}$ ):

- for $j=1$...n:
$\stackrel{\circ g_{j}\left(X_{j+1}\right), \Phi_{j+1: n} \leftarrow \text { CreateLookupTable }\left(\Phi_{j: n}, X_{j}\right)}{\bullet \cdot \operatorname{return} g_{1}\left(X_{1}\right) g\left(X_{2}\right) \ldots g_{n}(\emptyset)}$


## Max-product for MP in GTSAM

- While I expect you to understand the max-product algorithm, the implementation of is conveniently done by us in GTSAM:

```
mpe = graph.optimize()
pretty(mpe)
```

| Variable | value |
| ---: | ---: |
| X1 | Hallway |
| X2 | Dining Room |
| X3 | Kitchen |

## Sum-product for HMMs

- Similar dynamic programming idea:

$$
\begin{aligned}
P(\mathcal{X} \mid \mathcal{Z}) & \propto \prod \phi_{i}\left(\mathcal{X}_{i}\right) \\
& \propto \phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right) \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right) \\
& \propto\left\{\phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right)\right\} \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right) \\
& \propto\left\{P\left(X_{1} \mid X_{2}, \mathcal{Z}\right) \tau\left(X_{2}\right)\right\} \phi_{4}\left(X_{2}\right) \phi_{5}\left(X_{2}, X_{3}\right) \phi_{6}\left(X_{3}\right) \\
& =P\left(X_{1} \mid X_{2}, \mathcal{Z}\right) P\left(X_{2}, X_{3} \mid \mathcal{Z}\right)
\end{aligned}
$$

## Sum-product looks the same graphically:

- But eliminating now involves a sum and a conditional

$$
\phi\left(X_{1}, X_{2}\right)=\phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right)
$$



$$
P\left(X_{1} \mid X_{2}\right)=\frac{\phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right)}{\tau\left(X_{2}\right)} \left\lvert\, \begin{aligned}
& \tau\left(X_{2}\right) \\
& \tau\left(X_{2}\right) \doteq \sum_{X_{1}} \phi_{1}\left(X_{1}\right) \phi_{2}\left(X_{1}\right) \phi_{3}\left(X_{1}, X_{2}\right)
\end{aligned}\right.
$$

## Comparing max and sum-product:

- Almost identical, replace max with sum:

MaxProductHMM ( $\Phi_{1: n}$ ):

- for $j=1$... $n$ :
- $g_{j}\left(X_{j+1}\right), \Phi_{j+1: n} \leftarrow$ CreateLookupTable $\left(\Phi_{j: n}, X_{j}\right)$
- return $g_{1}\left(X_{2}\right) g_{2}\left(X_{3}\right) \ldots g_{n}(\emptyset)$

CreateLookupTable ( $\Phi_{j: n}, X_{j}$ ):

- Remove all factors $\phi_{i}\left(\mathcal{X}_{i}\right)$ that contain $X_{j}$
- Form the product factor $\phi\left(X_{j}, X_{j+1}\right) \leftarrow \prod_{i} \phi_{i}\left(\mathcal{X}_{i}\right)$
- Eliminate $X_{j}: g_{j}\left(X_{j+1}\right), \tau\left(X_{j+1}\right) \leftarrow \phi\left(X_{j}, X_{j+1}\right)$
- Add new factor $\tau\left(X_{j+1}\right)$ back into the graph $\Phi_{j+1: n}$
- return the lookup table $g_{j}\left(X_{j+1}\right)$ and reduced graph $\Phi_{j+1: n}$

SumProductHMM ( $\Phi_{1: n}$ ):

- for $j=1 \ldots n$ :
- $P\left(X_{j} \mid X_{j+1}\right), \Phi_{j+1: n} \leftarrow$ ApplyChainRule $\left(\Phi_{j: n}, X_{j}\right)$

。 return Bayes net $P\left(X_{1} \mid X_{2}\right) P\left(X_{2} \mid X_{3}\right) \ldots P\left(X_{n}\right)$
ApplyChainRule ( $\Phi_{j: n}, X_{j}$ ):

- Remove all factors $\phi_{i}\left(\mathcal{X}_{i}\right)$ that contain $X_{j}$
- Create product factor $\phi\left(X_{j}, X_{j+1}\right) \leftarrow \prod_{i} \phi_{i}\left(\mathcal{X}_{i}\right)$
- Factorize the product $P\left(X_{j} \mid X_{j+1}\right) \tau\left(X_{j+1}\right) \leftarrow \phi\left(X_{j}, X_{j+1}\right)$
- Add the new factor $\tau\left(X_{j+1}\right)$ back into the graph $\Phi_{j+1: n}$
- return the conditional $P\left(X_{j} \mid X_{j+1}\right)$ and reduced graph $\Phi_{j+1: n}$
- Spot the differences $:$


## Max and sum-product in GTSAM

- optimize yields an assignment, sumProduct yields a distribution!

```
mpe = graph.optimize()
pretty(mpe)
```

| Variable | value |
| ---: | ---: |
| X1 | Hallway |

```
posterior = graph.sumProduct()
show(posterior, hints={"X": 1})
```



X2 Dining Room
X3 Kitchen

## Power of posteriors

- We can sample from the posterior:

```
posterior = graph.sumProduct()
show(posterior, hints={"X": 1})
```



```
sample = posterior.sample()
pretty(sample)
\checkmark ~ 0 . 1 s
```

Variable value
X1 Hallway
X2 Dining Room
X3 Kitchen

## Power of posteriors

- We can sample from the posterior, e.g., sample 1000 alternate histories:

```
posterior = graph.sumProduct()
show(posterior, hints={"X": 1})
```


sample = posterior.sample()
pretty(sample)

## $\checkmark$ 0.1s

| Variable | value |
| ---: | ---: |
| X1 | Hallway |
| X2 | Dining Room |
| X3 | Kitchen |

```
counts = np.zeros((3, 5))
num_samples = 1000
for i in range(num_samples):
        sample = posterior.sample()
    for l in monmol1 3.11.
            (variable) room_index: Any
        room_index = sample[key]
        counts[k-1][room_index] += 1 # base 0!
```

0.9s
pd. DataFrame(data=100*counts/num_samples,
index=range(1, $N+1$ ), columns=vacuum. rooms)
0.7 s

|  | Living Room | Kitchen | Office | Hallway | Dining Room |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | 2.0 | 2.3 | 2.6 | 82.5 | 10.6 |
| 2 | 0.5 | 3.8 | 0.6 | 4.5 | 90.6 |
| 3 | 5.0 | 91.9 | 0.6 | 0.0 | 2.5 |

## Next Lecture

- Use the power of this full posterior inference (sum product!) together with a reward/cost framework to act optimally.

