-
o
O
o
Yy
O

Lecture 9

Robot

ing

Inference in Factor Graphs

A Vacuum Clean

For our vacuum robot, we looked at

e Simple sensing

Lecture &

(Dynamic) Bayes Nets

HMMs as a special case

recap

Most probable explanation (MPE)

Factor graphs

Vacuuming robot sensor

N—~
* Asingle sensor that detects light levels, and returns a
measurement z: -

I v
X1 dark medium light [|

Living Room 0.1 01 08 L;”;“\] s om Uilchew

. Kitchen 0.1 0.1 0.8
* Bright, z = 2 — -
. ! Office 0.2 07 0.1 l

o MEdlum, z=1 Hallway 08 01 04 OFF:.. Haollys - D.';.;,V

° Dark; Z = O Dining Room 0.1 08 0.1] 4 I o
|

e Sun is to the south, so plenty of light for living room + For Hallway, (z = 0 |H) = 0.8, MLE wil
and kitchen. do the job!

* Forz =1,z = 2, there’s really no way to
uniquely identify state from one

* Hallway has no windows and is always dark. measurement.

e Office and Dining room are poorly lit via windows.

he Magic of Bayes Nets

For a Bayes net with variables X; ... X, the joint distribution is
given by:

Py Xy = | [Paipoxs)

where P (X;) denotes the set of parents of node X;

For this specific network, the joint distribution is given by

P(W,X,Y,Z) = P(W|X,Z)P(X|Y,Z)P(Y|Z)P(Z)

Dynamic Bayes Nets

* Bayes nets can be used to represent systems that evolve over time.

* Our vacuum cleaning robot is an example of such a system, at any time t, we have x; and a;
and together, these determine (probabilistically) what happens for x;, 1.

* A dynamic Bayes net has a simple structure that repeats at each time step:

Hidden Markov Models (HMMs)

* Notice that in the system shown below,
* we know Z; = z; forall t
* We know a, forall t

* We do not know any of X ... X1, but we do know that the states form a Markov
chain.

* We say that the states, X ... X,,, are hidden.

HMMs are a good model for speech recognition

Qg aq LI Ap_1 systems:

* Spoken words behave like a Markov chain (if
you know the current word, you know a lot
about what will be the next word).

@ @ @ e oo Measurements are audio signals.

Note: If we increase the relevant history, e.g., so
that state X; dependson X;_4, X;_» ... X¢_,,, we
Zy Zq) Zn have an nth order Markov chain.

Larger n gives better prediction.

Most Probable Explanation

We are given Z, = z;, and a, for all ¢,

For every possible value of xy, ..., x,, compute

P(X,Z,A) = P(Zy, = zy| Xy = x9)P(Xy = x9) HP(Zi = 7| X; = x)P(X; = x| X;-1 = x;-1, a;)
i

Our estimate is given by

X" =argmaxx P(X,Z,A)

Not the most efficient algorithm, but in principle, this gets the job done.

Inference in

Factor Graphs

We take an HMM, modeled as a Bayes net.

We would like to do MPE as well as full Bayesian
inference.

We already know a naive algorithm for this: brute-
force enumeration of the posterior.

When we remove all variables that are given to us we
obtain a factor graph.

» The factor graph is a great tool to exploit the
sparse model structure to obtain computationally
efficient inference algorithms.

Factor Graphs

Xl @ § >—? | /\? | ?

* Measurements are given — get rid of them!

P(X|Z) o P(X;)L(X1; 21) P(X32|X1) L(X3; 29) P(X3| X2)L(X3; 23)

* This becomes:
O(X) = 01(X1)d2(X1)d3(X1, X2)da(X2)p5(X2, X3)6(X3)

Each factor defines a function ¢ which is a function only of its (non-factor node) neighbors.

General definition of Factor graphs

RAR AR

* Bipartite graph of variables and factors Subsets here are:

Xy ={ Xy}
o(X) = [oi(X) Xy = {X1}
: Xy = { X1, Xo}
. . Xy = {Xo
* Each &’ is the subset of variables connected to factor ¢, v i \.f}\. }
Ap = {-\':4}

Example

P(X|2) o P(X1)L(X1; 21)P(X2| X1)L(Xs; 2) P(X3| X2) L(X3; 23)

X1 "/_\;Xz; " X3

H(X) = d1(X1)P2(X1)d3(X1, Xo)pa(X2)ds(Xa, X3)de(X3)

Factor Graphs in GTSAM

* See
https://www.roboticsbook.org/S34 vacuum_perception.html#factor-
graphs-in-gtsam

’ show(graph)

¢(X17 X, X3) — H ¢2(XZ)

Computing with Factor Graphs

e Can evaluate for any X: #(X1, X2, X5) = | [¢:(%)

* Hence, naive MPE is also simple, e.g.:

mpe_value = 0 found MPE solution with value 0.3277:
mpe_trajectory = None

for x1 in vacuum.rooms:
for x2 in vacuum.rooms: Variable value
for x3 in vacuum.rooms:
trajectory = VARIABLES.assignment({X[1]: x1, X[2]: x2, X[3]: x3})
value = graph(trajectory) X1 HaIIway
if value > mpe_value:
mpe_value = value ..
mpe_trajectory = trajectory X2 Dlnlng Room
print(f"found MPE solution with value {mpe_value:.4f}:")
pretty(mpe_trajectory)

X3 Kitchen

Max-Product for MPE

* We can “eliminate” one variable at a time, e.g., X;:

m/{}XH@(Xz') = Jmax - ¢1(X1)$2(X1)¢s(X1, Xo) $4(X2)$5(X2, X3)p6(X3)
~ X {II%%X¢1(X1)¢2(X1)¢3(X1,Xz)} P4(X2)d5(X2, X3)d6(X3)
= max 7(X3) P4(X2)d5(X2, X3)P6(X3)

* The new quantity T(X5,) is no longer a function of X;, as for any given
value of X, we “memoize” the maximum value of the product of
three factors that involve X;.

* We eliminated X, 1!l

A graphical elimination game

* We can represent the elimination of X; graphically:

X °

(

L

oI

(X1, X2) = ¢1(X1)d2(X1)ds3(X1, X2)

‘,

gl(XZ) T(Xz)
91(X2) = argn}gxqb(:vl,Xz) T(X2) = H;ax¢(-’131,X2)

A graphical elimination game

* We then recurse on the new, smaller factor graph by eliminating X, :

@ //X\l; . @P

82(X3) 7(X3)

A graphical elimination game

* And finally, we eliminate X;:

¢(X3) = 7(X3)d6(X3)

g:(9)

Max-Product Revisited

* We decide on an elimination ordering, then for every elimination step
we calculate a product and a maximization:

MaxProductHMM (®.,):

° forj = 1...n:
o gj(Xj+1), ®j+1.n ¢ CreateLookupTable(®;.,, X;)
o return g1 (X3)g2(X3) - - . gn(0)

CreateLookupTable (®;.,, X;):

» Remove all factors ¢;(&;) that contain X

Form the product factor ¢(X;, X;.1) < [, ¢i(X;)
Eliminate .Xv.7 g](X]_+_1), T(Xj+1) — ¢(X], Xj_|_1)
Add new factor 7(X;+1) back into the graph ®;, 1.,

return the lookup table g;(X+1) and reduced graph ®;1.,

Back-substitution

e At the end, we recover the MPE value, but what about the MPE
assignment of X?

* Lookup tables g() to the rescue
MaxProductHMM (®.,):

e forg = 1...m:
o 9i(Xj41), ®j11.n < CreateLookupTable(®;.,, X;)
[retum 6:(X1)9(X>) - - -9a(0))

Max-product for MP in GTSAM

* While | expect you to understand the max-product algorithm, the
implementation of is conveniently done by us in GTSAM:

mpe = graph.optimize()

pretty(mpe)
Variable value
X1 Hallway

X2 Dining Room

X3 Kitchen

Sum-product for HMMs

e Similar dynamic programming idea:

P(X|Z) H¢z‘(Xz’)
o ¢1(X1)P2(X1)p3(X1, X2)da(X2)ps5(X2, X3)d6(X3)
o¢ {91(X1)d2(X1)P3(X1, X2)} Pa(X2)ds5(X2, X3)p6(X3)
o< {P(X1]|X2, Z)7(X2)} ¢a(X2)ds5(X2, X3)de(X3)
= P(X1|X», Z) P(X,,X3|2)

Sum-product looks the same graphically:

* But eliminating now involves a sum and a conditional
¢(X1,X2) = ¢1(X1)p2(X1)p3(X1, X2)

>—? (XTZ\ | ?
\‘\r J

¢1(X1)¢2(X1)¢3(X1,X2)l 7(X3)
%) H(X2) = 3 61(X1)62(X1) 65 (X, X2)

P(X,|X3) =

Comparing max and sum-product:

* Almost identical, replace max with sum:

MaxProductHMM (®;.,,): SumProductHMM (®.,):
e for 7 = 1...7 e forj = 1...m:
o g;(Xjt+1), ®j+1:n < CreateLookupTable(®;.n, X;) o P(X;|X;+1), ®j+1:n < ApplyChainRule(®;.,, X;)
o return g1(X3)g2(X3) - .. gn(0) o return Bayes net P(X;|X32)P(X3|X3) ... P(X,)
CreateLookupTable (®;.,, X;): ApplyChainRule (®;.,, X;):
» Remove all factors ¢; (X;) that contain X; « Remove all factors ¢; (X;) that contain X;

Form the product factor ¢(X;, X;.1) < [, ¢:(X;)
Eliminate)(.7 gJ(X]+1), T(Xj_|_1) — ¢(X], Xj_|_1)
Add new factor 7(X;+1) back into the graph @, 1.,

return the lookup table g;(X ;1) and reduced graph ®;.1.,,

Create product factor ¢(X;, X;11) < [, :(X;)

Factorize the product P(X;| X +1)7(X;+1) + ¢(Xj, Xj+1)
Add the new factor 7(X ;1) back into the graph @, 1.,
return the conditional P(X;|X1) and reduced graph ®;, 1.,

* Spot the differences ©

Max and sum-product in GTSAM

* optimize yields an assighment, sumProduct yields a distribution!

mpe = graph.optimize() posterior = graph.sumProduct()

pretty(mpe) show(posterior, hints={"X": 1})
Variable value ° @ °
X1 Hallway

X2 Dining Room

X3 Kitchen

Power of posteriors

* We can sample from the posterior:

posterior = graph.sumProduct()
show(posterior, hints={"X": 1})

sample = posterior.sample()
pretty(sample)

v/ 0.s
Variable value
X1 Hallway

X2 Dining Room
X3 Kitchen

Power of posteriors

* We can sample from the posterior, e.qg., sample 1000 alternate histories:

counts = np.zeros((3, 5))
num_samples = 1000

posterior = graph.sumProduct() for i in range(num_samples):
show(posterior, hints={"X": 1}) sample = posterior.sample()
-for | % - [ORpep AL | D1\ .

(variable) room_index: Any

room_index = sample[key]
counts[k-1] [room_index] += 1 # base 0!

v/ 0.9s
sample = posterior.sample() pd.DataFrame(data=100xcounts/num_samples,
pretty(sample) \ index=range(1, N+1), columns=vacuum.rooms)
v/ 0.1s v/ 0.7s
Variable value Living Room Kitchen Office Hallway Dining Room
X1 Hallway 1 2.0 2.3 2.6 82.5 10.6
X2 Dining Room 2 0.5 3.8 0.6 4.5 90.6

X3 Kitchen 3 5.0 91.9 0.6 0.0 2.5

Next Lecture

* Use the power of this full posterior inference (sum product!) together
with a reward/cost framework to act optimally.

