
CS 3630!

Lecture 9: 
A Vacuum Cleaning Robot:               
Inference in Factor Graphs



Lecture 8 
recap

For our vacuum robot, we looked at
• Simple sensing
• (Dynamic) Bayes Nets
• HMMs as a special case
• Most probable explanation (MPE)
• Factor graphs



Vacuuming robot sensor
• A single sensor that detects light levels, and returns a 

measurement 𝑧:

• Bright, 𝑧 = 2
• Medium, 𝑧 = 1
• Dark, 𝑧 = 0

• Sun is to the south, so plenty of light for living room 
and kitchen.
• Office and Dining room are poorly lit via windows.
• Hallway has no windows and is always dark.

• For Hallway, 𝒛 = 𝟎 𝑯) = 𝟎. 𝟖, MLE will 
do the job!

• For 𝒛 = 𝟏, 𝒛 = 𝟐, there’s really no way to 
uniquely identify state from one 
measurement.



The Magic of Bayes Nets

For a Bayes net with variables 𝑋+…𝑋,, the joint distribution is 
given by:

𝑷 𝑿𝟏…𝑿𝒏 =*
𝒊

𝑷 𝑿𝒊 𝓟(𝑿𝒊))

where 𝓟(𝑿𝒊) denotes the set of parents of node 𝑿𝒊

For this specific network, the joint distribution is given by

𝑷 𝑾,𝑿, 𝒀, 𝒁 = 𝑷 𝑾 𝑿,𝒁)𝑷 𝑿 𝒀, 𝒁)𝑷 𝒀 𝒁)𝑷(𝒁)



Dynamic Bayes Nets
• Bayes nets can be used to represent systems that evolve over time.
• Our vacuum cleaning robot is an example of such a system, at any time 𝑡, we have 𝑥/ and 𝑎/

and together, these determine (probabilistically) what happens for 𝑥/0+.
• A dynamic Bayes net has a simple structure that repeats at each time step:

𝑋! 𝑋" 𝑋# 𝑋$

𝑎! 𝑎" 𝑎$%"

𝑡 = 0 𝑡 =2 𝑡 = 𝑛 − 1 𝑡 = 𝑛𝑡 = 1



Hidden Markov Models (HMMs)
• Notice that in the system shown below, 
• we know 𝒁𝒕 = 𝒛𝒕 for all 𝒕
• We know 𝒂𝒕 for all 𝒕

• We do not know any of 𝑿𝟎…𝑿𝟏, but we do know that the states form a Markov 
chain. 
• We say that the states, 𝑿𝟎…𝑿𝒏, are hidden.

𝑋! 𝑋" 𝑋# 𝑋$

𝑎! 𝑎" 𝑎$%"
HMMs are a good model for speech recognition 
systems:
• Spoken words behave like a Markov chain (if 

you know the current word, you know a lot 
about what will be the next word).

• Measurements are audio signals.

Note: If we increase the relevant history, e.g., so 
that state 𝑋& depends on 𝑋&%", 𝑋&%#…𝑋&%$, we 
have an nth order Markov chain.
Larger 𝑛 gives better prediction.

𝑧! 𝑧" 𝑧$𝑧#



Most Probable Explanation

We are given 𝑍! = 𝑧!, and 𝑎! for all 𝑡.

For every possible value of 𝑥", … , 𝑥#, compute

𝑷 𝑿, 𝒁, 𝑨 = 𝑷 𝒁𝟎 = 𝒛𝟎 𝑿𝟎 = 𝒙𝟎)𝑷(𝑿𝟎 = 𝒙𝟎)2
𝒊

𝑷 𝒁𝒊 = 𝒛𝒊 𝑿𝒊 = 𝒙𝒊)𝑷 𝑿𝒊 = 𝒙𝒊 𝑿𝒊&𝟏 = 𝒙𝒊&𝟏, 𝒂𝒊)

Our estimate is given by

𝑿∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝑿 𝑷(𝑿, 𝒁, 𝑨)

Not the most efficient algorithm, but in principle, this gets the job done.



Inference in 
Factor Graphs

We take an HMM, modeled as a Bayes net.
We would like to do MPE as well as full Bayesian 
inference.
We already know a naïve algorithm for this: brute-
force enumeration of the posterior.
When we remove all variables that are given to us we 
obtain a factor graph.

Ø The factor graph is a great tool to exploit the 
sparse model structure to obtain computationally 
efficient inference algorithms.



Factor Graphs

• Measurements are given – get rid of them!

• This becomes:

𝑋" 𝑋# 𝑋'𝑋" 𝑋# 𝑋'

𝑍" 𝑍# 𝑍'

Each factor defines a function 𝝓 which is a function only of its (non-factor node) neighbors.



General definition of Factor graphs

• Bipartite graph of variables and factors

• Each     is the subset of variables connected to factor  

𝑋" 𝑋# 𝑋'

Subsets here are: 



Example

𝑋" 𝑋# 𝑋'

𝑋" 𝑋# 𝑋'

𝑍" 𝑍# 𝑍'



Factor Graphs in GTSAM

• See 
https://www.roboticsbook.org/S34_vacuum_perception.html#factor-
graphs-in-gtsam



Computing with Factor Graphs

• Can evaluate for any X:
• Hence, naïve MPE is also simple, e.g.:



Max-Product for MPE

• We can “eliminate” one variable at a time, e.g., X1:

• The new quantity 𝜏 𝑋7 is no longer a function of 𝑋8, as for any given 
value of 𝑋7 we “memoize” the maximum value of the product of 
three factors that involve 𝑋8.
• We eliminated 𝑋8 !!!!



A graphical elimination game
• We can represent the elimination of 𝑋8 graphically: 



A graphical elimination game
• We then recurse on the new, smaller factor graph by eliminating 𝑋7:



A graphical elimination game
• And finally, we eliminate 𝑋9:



Max-Product Revisited
• We decide on an elimination ordering, then for every elimination step 

we calculate a product and a maximization:



Back-substitution

• At the end, we recover the MPE value, but what about the MPE 
assignment of X?
• Lookup tables g() to the rescue



Max-product for MP in GTSAM

• While I expect you to understand the max-product algorithm, the 
implementation of is conveniently done by us in GTSAM:



Sum-product for HMMs

• Similar dynamic programming idea:



Sum-product looks the same graphically:
• But eliminating now involves a sum and a conditional



Comparing max and sum-product:
• Almost identical, replace max with sum:

• Spot the differences J



Max and sum-product in GTSAM
• optimize yields an assignment, sumProduct yields a distribution!



Power of posteriors
• We can sample from the posterior:



Power of posteriors
• We can sample from the posterior, e.g., sample 1000 alternate histories:



Next Lecture

• Use the power of this full posterior inference (sum product!) together 
with a reward/cost framework to act optimally.


