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Lecture 7: 
A Vacuum Cleaning Robot:               

Actions



Lecture 6 Recap



State Space
For this robot, the state, 𝑋, is defined as the room in which the robot is 
currently located:

𝑋 ∈ 𝑙𝑖𝑣𝑖𝑛𝑔 𝑟𝑜𝑜𝑚, 𝑘𝑖𝑡𝑐ℎ𝑒𝑛, 𝑜𝑓𝑓𝑖𝑐𝑒, ℎ𝑎𝑙𝑙𝑤𝑎𝑦, 𝑑𝑖𝑛𝑖𝑛𝑔 𝑟𝑜𝑜𝑚

A typical vacuum 
cleaning robot.

For all of the robot locations shown here, 
we have:

𝑿 = 𝒍𝒊𝒗𝒊𝒏𝒈 𝒓𝒐𝒐𝒎

The exact location within the living room 
is not relevant for this robot.

To simplify notation, we’ll sometimes write  𝑿 ∈ 𝑳,𝑲, 𝑶,𝑯,𝑫 .



Discrete time systems
• For our trash sorting robot, there was no need to consider the passing of time.

• Past actions did not affect future performance,
• Actions were executing in a single time step.
• The state, 𝑋, denoted the state at the present time, and we never needed to represent the state at any other time 

(neither past nor present).

• For our vacuum cleaning robot, the passing of time is important.
• We know the location of the robot at the start of the day, but after the robot executes its first actions, there will be 

uncertainty in the robot’s state.
• The state could change each time the robot executes an action.
• Sensor measurements depend on state, and state depends on actions; therefore, the sequence in which sensor 

measurements occur will give us information about the world that can be used for perception.

• Most of the time, nothing interesting happens.
• We don’t need to keep track of the state for all 𝑡 ∈ ℝ.
• We only need to keep track of state at discrete time instants, 𝑡 ∈ {𝑡!, 𝑡"…}, where {𝑡!, 𝑡"…} is the set of times at which 

something “interesting” occurs.

• We will represent the state at time 𝒕 by 𝑿𝒕, and we’ll simplify notation by simply using 𝒕 ∈ 𝟎, 𝟏, 𝟐… .
• The initial state of the robot (i.e., when it wakes up in the morning) is therefore:  𝑋" = 𝑜𝑓𝑓𝑖𝑐𝑒.



Belief state

• The belief state 𝑏#$% is conditioned on the initial state 𝑥" and all actions taken until time 𝑡.

𝑏#$%& =

𝑃 𝑋#$% = 𝐿 | 𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$% = 𝐾 | 𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$% = 𝑂 | 𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$% = 𝐻 | 𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$% = 𝐷 | 𝑎%…𝑎#, 𝑥"

Ø Note that we use 𝑏#$%& to denote the transpose of 𝑏#$% (for formatting purposes).

• It will sometimes be convenient to refer to the entire probability distribution at time 𝑡.
• We refer to this distribution as the belief state at time 𝑡, denoted by 𝑏#.
• The belief state is a row vector whose elements correspond to the possible states.
• In our case, there are five possible states, so 𝑏#& ∈ ℝ'.
• At 𝑡 = 0, the belief state is merely our initial distribution:

𝑏" = 𝑃(𝑋" = 𝐿), 𝑃 𝑋" = 𝐾 𝑃 𝑋" = 𝑂 𝑃 𝑋" = 𝐻 𝑃 𝑋" = 𝐷

= 0 0 1 0 0



Actions

Living
Room Kitchen

Office Dining
RoomHallway

up up downdown

left left

left

rightright

right

Our robot has four actions: 
up, down, left, right.

• Effects of actions are context dependent.
• Actions potentially cause a change in state.
• Executing an action in state 𝑋# produces 

state 𝑋#$%

up

down

right left

We can represent this by a slight modification to our 
state space:
• Instead of using an undirected graph, use a directed 

graph.
• Each edge (𝑢, 𝑣) corresponds to an action meant to 

change the state from 𝑥# = 𝑢 to 𝑥#$" = 𝑣.
• Sadly, our actions are not deterministic, so we need 

to do a bit more work.



• We will model uncertainty in the effects of actions by using conditional probability 
distributions.
• In particular, we define the conditional probability distribution for the next state, 𝑋NOP, 

given that the current state, 𝑋N is room 𝑥N, and that action 𝑎N was executed at time 𝑡.

𝑃 𝑋NOP = 𝑥NOP 𝑎N, 𝑋N = 𝑥N)

Uncertainty in the effects of actions

Random variable 
that denotes the 
state at time 𝑡 + 1. Value taken 

by 𝑋#$" at 
time 𝑡 + 1.

Action taken 
at time 𝑡.

The random state 
𝑋# took the value 𝑥#.

Example: If we are in the Office at time t and execute the move right action, 𝑃 𝑋#$" = 𝐻 𝑟𝑖𝑔ℎ𝑡 , 𝑋# = 𝑂)
denotes the conditional probability of arriving to the Hallway. 



The Markov property
• Using our Markov property, we can write

𝑃 𝑋V = 𝑥V 𝑟𝑖𝑔ℎ𝑡, 𝑢𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑋W = 𝑂,𝑋P = 𝐻,𝑋X = 𝐿) = 𝑃 𝑋V = 𝑥V 𝑟𝑖𝑔ℎ𝑡, 𝑋X = 𝐿)

Where the robot has 
been before time 𝑡.

What the robot has 
done before time 𝑡.

Where the robot is 
now, at time 𝑡.

What the robot 
does now, at time 𝑡.

Our Markov assumption:

𝑷 𝑿𝒕O𝟏 = 𝒙𝒕O𝟏 𝒂𝟎, …𝒂𝒕, 𝑿𝟎 = 𝒙𝟎, … , 𝑿𝒕 = 𝒙𝒕) = 𝑷 𝑿𝒕O𝟏 = 𝒙𝒕O𝟏 𝒂𝒕, 𝑿𝒕= 𝒙𝒕 )



Actions:
Part 2

• Our vacuum cleaning robot has four actions:  
Ø Move left, right, up, or down (relative to the map 

of the house)

• Effects of actions are probabilistic.
• Effects of actions depend on the current state.
Ø Use conditional probabilities to model the effects 

of actions.

• For a specific sequence of actions (e.g., up, right, 
down, left) computing probabilities for states in the 
distant future seems complicated. 

Ø Happily, thanks to the Markov property, these 
computations are not so difficult.



Conditional probability distributions for actions
• Thanks to our Markov assumption, all necessary knowledge about the probabilistic effects of actions is included 

in our conditional probability tables.

• For example, if 𝑋# = 𝐿, we can write conditional probability distributions for each of the four possible actions. 
• In our example scenario, a reasonable distribution could be:

𝑋# 𝑎#



Conditional probability distributions for actions
• Thanks to our Markov assumption, all necessary knowledge about the probabilistic effects of actions is included 

in our conditional probability tables.

• For example, if 𝑋# = 𝐿, we can write conditional probability distributions for each of the four possible actions. 
• In our example scenario, a reasonable distribution could be:

X% = Living Room
Action = 𝑚𝑜𝑣𝑒 𝑟𝑖𝑔ℎ𝑡.

Ø Regardless of how we came to be in the Living Room, if we now execute the action move right, we 
arrive to the Kitchen with probability 0.8, and stay in the Living Room with probability 0.2.

𝑋# 𝑎#



Conditional probability distributions for actions
• Thanks to our Markov assumption, we can encapsulate all necessary knowledge about the probabilistic effects 

of actions using conditional probability tables.

• For example, if 𝑋# = 𝐿, we can write conditional probability distributions for each of the four possible actions. 

• In our example scenario, a reasonable distribution could be:

Taken together, these four rows give the 
Conditional Probability Table for:
• Arriving to the each of the five possible 

rooms for X#$"
• Given that

X% = Living Room
• For	each	possible	action	a%

• Left,	Right,	Up,	Down	

𝑷 𝑿𝒕O𝟏 = 𝒙𝒕O𝟏 𝒂𝒕, 𝑿𝒕= 𝑳𝒊𝒗𝒊𝒏𝒈 𝑹𝒐𝒐𝒎)

𝑋# 𝑎#

𝑋#$"



Conditional probability tables
In the book, you’ll find the CPTs for the four actions collected into a very large table.

If the robot is in the Office, then moving up or moving 
down will not allow the robot to change rooms.

This table was constructed by hand, with intuitively reasonable 
probability values.

up

down



Conditional probability tables
In the book, you’ll find the CPTs for the four actions collected into a very large table.

If the robot is in the Office and moves right, it will stay in the 
Office (prob = 0.2) or arrive to the Hallway (prob = 0.8)

This table was constructed by hand, with intuitively reasonable 
probability values.

right



Conditional probability tables
In the book, you’ll find the CPTs for the four actions collected into a very large table.

If the robot is in the Kitchen and moves left, it will stay in the 
Kitchen (prob = 0.2) or arrive to the Living Room (prob = 0.8)

This table was constructed by hand, with intuitively reasonable 
probability values.

left



Conditional probability tables
We can construct a conditional probability table for each action using this large table.

𝑀( =

0.2 0.8 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.2 0.8
0.0 0.0 0.0 0.0 1.0

• Consider the action move right.
• We construct the conditional probability matrix for this 

action by collecting the move right rows from the table.



Conditional probability tables
We can construct a conditional probability table for each action using this large table.

• Consider the action move right.
• We construct the conditional probability matrix for this 

action by collecting the move right rows from the table.

𝑀( =

0.2 0.8 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.2 0.8
0.0 0.0 0.0 0.0 1.0



Conditional probability tables
We can construct a conditional probability table for each action using this large table.

• Consider the action move right.
• We construct the conditional probability matrix for this 

action by collecting the move right rows from the table.

𝑀( =

0.2 0.8 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.2 0.8
0.0 0.0 0.0 0.0 1.0

𝑀! =

𝑃(𝐿|𝐿, 𝑟) 𝑃(𝐾|𝐿, 𝑟) 𝑃(𝑂|𝐿, 𝑟) 𝑃(𝐻|𝐿, 𝑟) 𝑃(𝐷|𝐿, 𝑟)
𝑃(𝐿|𝐾, 𝑟) 𝑃(𝐾|𝐾, 𝑟) 𝑃(𝑂|𝐾, 𝑟) 𝑃(𝐻|𝐾, 𝑟) 𝑃(𝐷|𝐾, 𝑟)
𝑃(𝐿|𝑂, 𝑟) 𝑃(𝐾|𝑂, 𝑟) 𝑃(𝑂|𝑂, 𝑟) 𝑃(𝐻|𝑂, 𝑟) 𝑃(𝐷|𝑂, 𝑟)
𝑃(𝐿|𝐻, 𝑟) 𝑃(𝐾|𝐻, 𝑟) 𝑃(𝑂|𝐻, 𝑟) 𝑃(𝐻|𝐻, 𝑟) 𝑃(𝐷|𝐻, 𝑟)
𝑃(𝐿|𝐷, 𝑟) 𝑃(𝐾|𝐷, 𝑟) 𝑃(𝑂|𝐷, 𝑟) 𝑃(𝐻|𝐷, 𝑟) 𝑃(𝐷|𝐷, 𝑟)



Posterior probabilities
• Suppose we start in the Office, and execute a sequence of commands 𝑎W, … 𝑎N.
• What should we believe about the state of the robot at time 𝑡 + 1?
• The belief state 𝑏NOP represents our belief about the state of the robot at time 𝑡 + 1.
• The belief state is merely the conditional probability distribution for 𝑋NOP given the initial 

state and all actions that have been executed.
• For each possible value, 𝑥NOP, that can be assigned to 𝑋NOP we want to determine:

𝑃 𝑋NOP = 𝑥NOP 𝑎W, … 𝑎N, 𝑋W = 𝑥W)

• How can we compute this?
• Is it necessary to do a long chain of reasoning all the way back to 𝑡 = 0 every time we 

execute an action?



Posterior probabilities
• Remember the law of total probability:

𝑃 𝐴 = ∑𝑃 𝐴 𝐵N 𝑃 𝐵N

• We can condition everything on some context, 𝐾N, to obtain:

𝑃 𝐴 | 𝐾N = ∑𝑃 𝐴 𝐵N, 𝐾N 𝑃 𝐵N | 𝐾N

• Define the context at time 𝑡 to be 𝐾N ≜ 𝑎W, … 𝑎N = 𝐾NvP, 𝑎N.
• Let 𝐵N be the event 𝐵N ≜ 𝑋N = 𝑥N.
• Let 𝐴 be the event 𝐴 ≜ 𝑋NOP = 𝑥NOP.
• Then we can write

𝑃 𝑋NOP = 𝑥NOP 𝐾N) =J
w.

𝑃 𝑋NOP 𝑋N = 𝑥N, 𝐾N 𝑃 𝑋N = 𝑥N| 𝐾N



• We can rewrite

𝑃 𝑋NOP = 𝑥NOP 𝐾N) = ∑𝑃 𝑋NOP 𝑋N = 𝑥N, 𝐾N 𝑃 𝑋N = 𝑥N| 𝐾N

using the fact that 𝐾N = 𝐾NvP, 𝑎N:

𝑃 𝑋NOP = 𝑥NOP 𝐾N) =J
w.

𝑃 𝑋NOP = 𝑥NOP 𝑋N = 𝑥N, 𝐾NvP, 𝑎N )𝑃(𝑋N = 𝑥N|𝐾NvP, 𝑎N)

Posterior probabilities

Sum over all possible values of 𝑋#:
Ø Living Room, Kitchen, Office, Hallway, Dining Room 

Complete history of the robot’s actions to date:
Ø K% = 𝑎!, … 𝑎#



• We can now apply our Markov assumption to the equation

𝑃 𝑋#$% = 𝑥#$% 𝐾#) =D
)!

𝑃 𝑋#$% = 𝑥#$% 𝑋# = 𝑥#, 𝐾#*%, 𝑎# )𝑃(𝑋# = 𝑥#|𝐾#*%, 𝑎#)

• Given 𝑋# = 𝑥#, the next state 𝑋#$% is conditionally independent of all past actions:

𝑃 𝑋#$% = 𝑥#$% 𝑋# = 𝑥#, 𝐾#*%, 𝑎# ) = 𝑃 𝑋#$% = 𝑥#$% 𝑋# = 𝑥#, 𝑎# )

• Furthermore, the action 𝑎# does not affect the state 𝑋#, and therefore

𝑃 𝑋# = 𝑥# 𝐾#*%, 𝑎# = 𝑃(𝑋# = 𝑥#|𝐾#*%)

Substitute these into the equation above, and we obtain:

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑲𝒕) =D
𝒙𝒕

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑿𝒕 = 𝒙𝒕, 𝒂𝒕 )𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕*𝟏)

Posterior probabilities



• Let’s take a closer look at this result:

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑲𝒕) =D
𝒙𝒕

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑿𝒕 = 𝒙𝒕, 𝒂𝒕 )𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕*𝟏)

Posterior probabilities

The posterior probability for state 
𝑋#$" given the actions 𝑎!, … 𝑎#

Action model, given by a 
conditional probability table

Prior probability for 𝑋#, given the 
actions 𝑎!, … 𝑎#&"

How do we know 𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕v𝟏) ?



• Let’s take a closer look at this result:

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑲𝒕) =D
𝒙𝒕

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑿𝒕 = 𝒙𝒕, 𝒂𝒕 )𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕*𝟏)

Posterior probabilities

For 𝑡 = 0, the prior takes the form:

𝑷(𝑿𝟎 = 𝒙𝟎|𝑲&𝟏)

But we never have 𝑡 = −1, so for the base case at 𝑡 = 0, we use the prior on initial state, 𝑃(𝑋! = 𝑥!), which gives:

𝑷 𝑿𝟏 = 𝒙𝟏 𝑲𝟎) =�
𝒙𝟎

𝑷 𝑿𝟏 = 𝒙𝟏 𝑿𝟎 = 𝒙𝟎, 𝒂𝟏 )𝑷(𝑿𝟎 = 𝒙𝟎)

We now proceed iteratively to compute 𝑃 𝑋#$" = 𝑥#$" 𝐾#) for arbitrary 𝑡.



• Let’s take a closer look at this result:

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑲𝒕) =D
𝒙𝒕

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑿𝒕 = 𝒙𝒕, 𝒂𝒕 )𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕*𝟏)

Posterior probabilities

The sum is taken over the set of all possible values for x%

�
*"∈{-,/,0,1,2}

𝑃 𝑋#$" = 𝑥#$" 𝑋# = 𝑥# , 𝑎# )𝑃(𝑋# = 𝑥#|𝐾#&")

At time 𝑡, the state could be any of the rooms, {𝐿, 𝐾, 𝑂, 𝐻, 𝐷}.



• Let’s take a closer look at this result:

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑲𝒕) =D
𝒙𝒕

𝑷 𝑿𝒕$𝟏 = 𝒙𝒕$𝟏 𝑿𝒕 = 𝒙𝒕, 𝒂𝒕 )𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕*𝟏)

Posterior probabilities

This equation tells us how to compute the probability that 𝑋#$" is in the specific state, x%$" ∈ 𝐿, 𝐾, 𝑂, 𝐻, 𝐷 .

To compute 𝑏#$", we would need to use this equation five time, once for each possible value for 𝑋#$".

This equation applies to a specific action, 𝑎#, e.g., move up.

If we want to know the probability distribution of 𝑋#$"for a different 
action, e.g., move right, we need to use the equation again. 

Don’t forget, a% is hiding in 𝑲𝒕.



Matrix form
• We can write the expression for 𝑃 𝑋#$% = 𝑥#$% 𝐾#) in a more compact form

• To keep things simple, let’s use the action, move right, and compute the probability of arriving to the Living 
Room:

𝑃 𝑋#$" = 𝐿 𝐾#) = ∑*" 𝑃 𝑋#$" = 𝐿 𝑋# = 𝑥# , 𝑎# = 𝑟 )𝑃(𝑋# = 𝑥#|𝐾#&")
= 𝑃 𝑋#$" = 𝐿 𝑋# = 𝐿, 𝑟 )𝑃 𝑋# = 𝐿 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝐾, 𝑟 )𝑃 𝑋# = 𝐾 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝑂, 𝑟 )𝑃 𝑋# = 𝑂 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝐻, 𝑟 )𝑃 𝑋# = 𝐻 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝐷, 𝑟 )𝑃 𝑋# = 𝐷 𝐾#&"

• We can write this as a simple matrix equation:

𝑃 𝑋#$% = 𝐿 𝐾#) = 𝑃 𝑋# = 𝐿 | 𝐾#&% 𝑃 𝑋# = 𝐾 | 𝐾#&% 𝑃 𝑋# = 𝑂 |𝐾#&% 𝑃 𝑋# = 𝐻 |𝐾#&% 𝑃 𝑋# = 𝐷 |𝐾#&%

𝑃(𝐿|𝐿, 𝑟)
𝑃(𝐿|𝐾, 𝑟)
𝑃(𝐿|𝑂, 𝑟)
𝑃(𝐿|𝐻, 𝑟)
𝑃(𝐿|𝐷, 𝑟)



• We can write the expression for 𝑃 𝑋#$% = 𝑥#$% 𝐾#) in a more compact form

• To keep things simple, let’s use the action, move right, and compute the probability of arriving to the Living 
Room:

𝑃 𝑋#$" = 𝐿 𝐾#) = ∑*" 𝑃 𝑋#$" = 𝐿 𝑋# = 𝑥# , 𝑎# = 𝑟 )𝑃(𝑋# = 𝑥#|𝐾#&")
= 𝑃 𝑋#$" = 𝐿 𝑋# = 𝐿, 𝑟 )𝑃 𝑋# = 𝐿 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝐾, 𝑟 )𝑃 𝑋# = 𝐾 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝑂, 𝑟 )𝑃 𝑋# = 𝑂 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝐻, 𝑟 )𝑃 𝑋# = 𝐻 𝐾#&" +
𝑃 𝑋#$" = 𝐿 𝑋# = 𝐷, 𝑟 )𝑃 𝑋# = 𝐷 𝐾#&"

• We can write this as a simple matrix equation:

𝑃 𝑋#$% = 𝐿 𝐾#) = 𝑃 𝑋# = 𝐿 | 𝐾#&% 𝑃 𝑋# = 𝐾 | 𝐾#&% 𝑃 𝑋# = 𝑂 |𝐾#&% 𝑃 𝑋# = 𝐻 |𝐾#&% 𝑃 𝑋# = 𝐷 |𝐾#&%

𝑃(𝐿|𝐿, 𝑟)
𝑃(𝐿|𝐾, 𝑟)
𝑃(𝐿|𝑂, 𝑟)
𝑃(𝐿|𝐻, 𝑟)
𝑃(𝐿|𝐷, 𝑟)

Matrix form

This is merely one column from the 
conditional probability matrix for the action 
move right.

This row matrix is exactly the prior 𝑏#



• We can write a similar expression for each state 𝑋#$% ∈ {𝐿, 𝐾, 𝑂, 𝐻, 𝐷}.
• We can then collect these five equations into a single matrix equation.

• Let 𝑀𝒜 denote the conditional probability matrix for action 𝒜.
• Recall, when 𝒜 is move right, we have:

𝑀( =

𝑃(𝐿|𝐿, 𝑟) 𝑃(𝐾|𝐿, 𝑟) 𝑃(𝑂|𝐿, 𝑟) 𝑃(𝐻|𝐿, 𝑟) 𝑃(𝐷|𝐿, 𝑟)
𝑃(𝐿|𝐾, 𝑟) 𝑃(𝐾|𝐾, 𝑟) 𝑃(𝑂|𝐾, 𝑟) 𝑃(𝐻|𝐾, 𝑟) 𝑃(𝐷|𝐾, 𝑟)
𝑃(𝐿|𝑂, 𝑟) 𝑃(𝐾|𝑂, 𝑟) 𝑃(𝑂|𝑂, 𝑟) 𝑃(𝐻|𝑂, 𝑟) 𝑃(𝐷|𝑂, 𝑟)
𝑃(𝐿|𝐻, 𝑟) 𝑃(𝐾|𝐻, 𝑟) 𝑃(𝑂|𝐻, 𝑟) 𝑃(𝐻|𝐻, 𝑟) 𝑃(𝐷|𝐻, 𝑟)
𝑃(𝐿|𝐷, 𝑟) 𝑃(𝐾|𝐷, 𝑟) 𝑃(𝑂|𝐷, 𝑟) 𝑃(𝐻|𝐷, 𝑟) 𝑃(𝐷|𝐷, 𝑟)

=

0.2 0.8 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.2 0.8
0.0 0.0 0.0 0.0 1.0

• We can now compute 𝑏#$% = 𝑃 𝑋#$% = 𝐿 𝐾#) by combining these equations to obtain:

𝑏#$% = 𝑏#𝑀(

Let’s take a closer look….

Matrix form



Calculating the belief state

𝑏"#$ = 𝑏"𝑀! =

𝑃 𝑋" = 𝐿 | 𝐾"%$ 𝑃 𝑋" = 𝐾 | 𝐾"%$ 𝑃 𝑋" = 𝑂 |𝐾"%$ 𝑃 𝑋" = 𝐻 |𝐾"%$ 𝑃 𝑋" = 𝐷 |𝐾"%$

𝑃(𝐿|𝐿, 𝑟) 𝑃(𝐾|𝐿, 𝑟) 𝑃(𝑂|𝐿, 𝑟) 𝑃(𝐻|𝐿, 𝑟) 𝑃(𝐷|𝐿, 𝑟)
𝑃(𝐿|𝐾, 𝑟) 𝑃(𝐾|𝐾, 𝑟) 𝑃(𝑂|𝐾, 𝑟) 𝑃(𝐻|𝐾, 𝑟) 𝑃(𝐷|𝐾, 𝑟)
𝑃(𝐿|𝑂, 𝑟) 𝑃(𝐾|𝑂, 𝑟) 𝑃(𝑂|𝑂, 𝑟) 𝑃(𝐻|𝑂, 𝑟) 𝑃(𝐷|𝑂, 𝑟)
𝑃(𝐿|𝐻, 𝑟) 𝑃(𝐾|𝐻, 𝑟) 𝑃(𝑂|𝐻, 𝑟) 𝑃(𝐻|𝐻, 𝑟) 𝑃(𝐷|𝐻, 𝑟)
𝑃(𝐿|𝐷, 𝑟) 𝑃(𝐾|𝐷, 𝑟) 𝑃(𝑂|𝐷, 𝑟) 𝑃(𝐻|𝐷, 𝑟) 𝑃(𝐷|𝐷, 𝑟)

Let’s look at the first entry of 𝒃𝒕O𝟏 --- the product of 𝒃𝒕 and the first column of 𝑴𝒓. 



Calculating the belief state

𝑏"#$ = 𝑏"𝑀! =

𝑃 𝑋" = 𝐿 | 𝐾"%$ 𝑃 𝑋" = 𝐾 | 𝐾"%$ 𝑃 𝑋" = 𝑂 |𝐾"%$ 𝑃 𝑋" = 𝐻 |𝐾"%$ 𝑃 𝑋" = 𝐷 |𝐾"%$

𝑃(𝐿|𝐿, 𝑟) 𝑃(𝐾|𝐿, 𝑟) 𝑃(𝑂|𝐿, 𝑟) 𝑃(𝐻|𝐿, 𝑟) 𝑃(𝐷|𝐿, 𝑟)
𝑃(𝐿|𝐾, 𝑟) 𝑃(𝐾|𝐾, 𝑟) 𝑃(𝑂|𝐾, 𝑟) 𝑃(𝐻|𝐾, 𝑟) 𝑃(𝐷|𝐾, 𝑟)
𝑃(𝐿|𝑂, 𝑟) 𝑃(𝐾|𝑂, 𝑟) 𝑃(𝑂|𝑂, 𝑟) 𝑃(𝐻|𝑂, 𝑟) 𝑃(𝐷|𝑂, 𝑟)
𝑃(𝐿|𝐻, 𝑟) 𝑃(𝐾|𝐻, 𝑟) 𝑃(𝑂|𝐻, 𝑟) 𝑃(𝐻|𝐻, 𝑟) 𝑃(𝐷|𝐻, 𝑟)
𝑃(𝐿|𝐷, 𝑟) 𝑃(𝐾|𝐷, 𝑟) 𝑃(𝑂|𝐷, 𝑟) 𝑃(𝐻|𝐷, 𝑟) 𝑃(𝐷|𝐷, 𝑟)

→ 𝑃 𝑋"#$ = 𝐿 𝑋" = 𝐿, 𝑟 )𝑃 𝑋" = 𝐿 𝐾"%$ +

𝑃 𝑋"#$ = 𝐿 𝑋" = 𝐾, 𝑟 )𝑃 𝑋" = 𝐾 𝐾"%$ +

𝑃 𝑋"#$ = 𝐿 𝑋" = 𝑂, 𝑟 )𝑃 𝑋" = 𝑂 𝐾"%$ +

𝑃 𝑋"#$ = 𝐿 𝑋" = 𝐻, 𝑟 )𝑃 𝑋" = 𝐻 𝐾"%$ +

𝑃 𝑋"#$ = 𝐿 𝑋" = 𝐷, 𝑟 )𝑃 𝑋" = 𝐷 𝐾"%$

Ø This is exactly the computation we performed above!
Ø This works for each entry of 𝒃𝒕O𝟏.



Calculating the belief state

If we execute action 𝓐 at time 𝒕, the belief state, 𝒃𝒕O𝟏 = 𝑷 𝑿𝒕O𝟏 = 𝒙𝒕O𝟏 𝑲𝒕), 
is given by

𝒃𝒕O𝟏 = 𝒃𝒕𝑴𝓐

in which 𝑴𝓐 is the conditional probability matrix for action 𝓐 and 𝒃𝒕 is the 
belief state at time 𝒕.



Example: Move Right
As we have seen above, if we execute the command move right from the initial state, 𝑥! = 𝑂𝑓𝑓𝑖𝑐𝑒, we obtain

𝑏" = 𝑏!𝑀5 = 0 0 1 0 0

0.2 0.80 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.2 0.8
0.0 0.0 0.0 0.0 1.0

= 0.0 0.0 0.2 0.8 0.0

= 𝑃 𝑋% = 𝐿 𝑟, 𝑋' = 𝑂), 𝑃 𝑋% = 𝐾 |𝑟, 𝑋' = 𝑂 𝑃 𝑋% = 𝑂 |𝑟, 𝑋' = 𝑂 , 𝑃 𝑋% = 𝐻 |𝑟, 𝑋' = 𝑂 𝑃 𝑋% = 𝐷 |𝑟, 𝑋' = 𝑂

• You can imagine probability mass being pushed to the right by a 
sloppy worker.

• Only 80% of the probability arrives to the Hallway.
right



Move right multiple times
If we now again execute the action move right at time 𝑡 = 1, we obtain

𝑏. = 𝑏%𝑀( = 0.0 0.0 0.2 0.8 0.0

0.2 0.80 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.2 0.8
0.0 0.0 0.0 0.0 1.0

= 0.0 0.0 0.04 0.32 0.64

right



Move right multiple times
If we now again execute the action move right at time 𝑡 = 1, we obtain

𝑏. = 𝑏%𝑀( = 0.0 0.0 0.2 0.8 0.0

0.2 0.80 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.2 0.8
0.0 0.0 0.0 0.0 1.0

= 0.0 0.0 0.04 0.32 0.64

If we execute the action move right 𝑛 times in succession, we obtain

𝑏/ = 𝑏"𝑀(
/

Ø As you can imagine, there’s a very beautiful theory to systems like this – a combination of linear 
algebra and probability theory.



Markov chains
• Suppose we have chosen a specific sequence of actions: 𝑎W, … 𝑎�
• At stage 𝑡 + 1, we compute the belief 𝑏NOP using conditional probability matrix 𝑀�. and the 

prior belief 𝑏N:
𝑏NOP = 𝑏N𝑀�. = 𝑏W𝑀�3𝑀�4𝑀�5 …𝑀�.64𝑀�.

𝑏"

𝑏6

𝑏#

𝑏7At any time 𝒕, all of the available 
information about the history of the robot 
(where it has been, what it has done) is 
contained in the belief state 𝒃𝒕.

If you know 𝑏#, learning specific previous 
actions does not add information.

Recall that 𝑏! is the initial 
distribution for state, in our 
example scenario:

𝑏! = 0 0 1 0 0



Markov chains
• A sequence of random variables 𝑋W, …𝑋� is a Markov chain if the Markov property holds

𝑃 𝑋NOP 𝑋N, 𝑋NvP, …𝑋W) = 𝑃 𝑋NOP 𝑋N)

• In our case, we have a fixed action sequence 𝑎W…𝑎N, which defines the distributions for each 
of the 𝑋�.
• For a fixed sequence of actions, the state of our vacuum cleaning robot forms a Markov chain.
• A Markov chain has a simple graphical representation:

𝑋! 𝑋" 𝑋6 𝑋8 𝑃 𝑋#$" 𝑎!…𝑎# , 𝑥!) → 𝑏#$" = 𝑏#𝑀9"

Each node includes the distribution 𝒃𝒕 and each arc corresponds to the computation 𝒃𝒕&𝟏𝑴𝒂𝒕



Controlled Markov chains
• So far, in our discussions about the Markov chain 𝑋", …𝑋#, we have been careful to always add the phrase  

“for a fixed action sequence 𝑎"…𝑎#.”
• We can think of the actions, 𝑎"…𝑎#, as control inputs to the system.
Ø Our choice of 𝑎"…𝑎# controls how the system evolves.

Ø We don’t control the actual state 𝑋0,  but we do control which conditional probability matrix is used to 
update the belief state.

q We call this kind of process a controlled Markov chain.

• A controlled Markov chain also has a nice graphical representation:

𝑋! 𝑋" 𝑋6 𝑋8

𝑎! 𝑎" 𝑎8&" Note:
States are random – circles.
Actions are deterministic – boxes.

There is so much important stuff on this slide!!



Next Lecture:  A Vacuum Cleaning Robot

• Bayes Nets
• Uncertainty in sensing for a sequence of measurements
• Hidden Markov Models (HMM)


