CS 3630!

Lecture 7:

A Vacuum Cleaning Robot: Actions

Lecture 6 Recap

State Space

For this robot, the state, X, is defined as the room in which the robot is currently located:

$$
X \in\{\text { living room, kitchen, office, hallway, dining room }\}
$$

For all of the robot locations shown here, we have:

$$
X=\text { living room }
$$

The exact location within the living room is not relevant for this robot.

To simplify notation, we'll sometimes write $X \in\{L, K, O, H, D\}$.

Discrete time systems

- For our trash sorting robot, there was no need to consider the passing of time.
- Past actions did not affect future performance,
- Actions were executing in a single time step.
- The state, X, denoted the state at the present time, and we never needed to represent the state at any other time (neither past nor present).
- For our vacuum cleaning robot, the passing of time is important.
- We know the location of the robot at the start of the day, but after the robot executes its first actions, there will be uncertainty in the robot's state.
- The state could change each time the robot executes an action.
- Sensor measurements depend on state, and state depends on actions; therefore, the sequence in which sensor measurements occur will give us information about the world that can be used for perception.
- Most of the time, nothing interesting happens.
- We don't need to keep track of the state for all $t \in \mathbb{R}$.
- We only need to keep track of state at discrete time instants, $t \in\left\{t_{0}, t_{1} \ldots\right\}$, where $\left\{t_{0}, t_{1} \ldots\right\}$ is the set of times at which something "interesting" occurs.
- We will represent the state at time t by X_{t}, and we'll simplify notation by simply using $t \in\{0,1,2 \ldots\}$.
- The initial state of the robot (i.e., when it wakes up in the morning) is therefore: $X_{0}=o f f i c e$.

Belief state

- It will sometimes be convenient to refer to the entire probability distribution at time t.
- We refer to this distribution as the belief state at time t, denoted by b_{t}.
- The belief state is a row vector whose elements correspond to the possible states.
- In our case, there are five possible states, so $b_{t}^{T} \in \mathbb{R}^{5}$.
- At $t=0$, the belief state is merely our initial distribution:

$$
\begin{aligned}
b_{0} & =\left[\begin{array}{lllll}
P\left(X_{0}=L\right), & P\left(X_{0}=K\right) & P\left(X_{0}=O\right) & P\left(X_{0}=H\right) & P\left(X_{0}=D\right)
\end{array}\right] \\
& =\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- The belief state b_{t+1} is conditioned on the initial state x_{0} and all actions taken until time t.

$$
b_{t+1}^{T}=\left[\begin{array}{l}
P\left(X_{t+1}=L \mid a_{1} \ldots a_{t}, x_{0}\right) \\
P\left(X_{t+1}=K \mid a_{1} \ldots a_{t}, x_{0}\right) \\
P\left(X_{t+1}=O \mid a_{1} \ldots a_{t}, x_{0}\right) \\
P\left(X_{t+1}=H \mid a_{1} \ldots a_{t}, x_{0}\right) \\
P\left(X_{t+1}=D \mid a_{1} \ldots a_{t}, x_{0}\right)
\end{array}\right]
$$

$>$ Note that we use b_{t+1}^{T} to denote the transpose of b_{t+1} (for formatting purposes).

Actions

Our robot has four actions:
up, down, left, right.

- Effects of actions are context dependent.
- Actions potentially cause a change in state.
- Executing an action in state X_{t} produces state X_{t+1}

We can represent this by a slight modification to our state space:

- Instead of using an undirected graph, use a directed graph.
- Each edge (u, v) corresponds to an action meant to change the state from $x_{t}=u$ to $x_{t+1}=v$.
- Sadly, our actions are not deterministic, so we need to do a bit more work.

Uncertainty in the effects of actions

- We will model uncertainty in the effects of actions by using conditional probability distributions.
- In particular, we define the conditional probability distribution for the next state, X_{t+1}, given that the current state, X_{t} is room x_{t}, and that action a_{t} was executed at time t.

Example: If we are in the Office at time t and execute the move right action, $P\left(X_{t+1}=H \mid\right.$ right , $\left.X_{t}=0\right)$ denotes the conditional probability of arriving to the Hallway.

The Markov property

- Using our Markov property, we can write

Our Markov assumption:

$$
P\left(X_{t+1}=x_{t+1} \mid a_{0}, \ldots a_{t}, X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right)=P\left(X_{t+1}=x_{t+1} \mid a_{t}, X_{t}=x_{t}\right)
$$

- Our vacuum cleaning robot has four actions:
> Move left, right, up, or down (relative to the map of the house)

Actions: Part 2

- Effects of actions are probabilistic.
- Effects of actions depend on the current state.
> Use conditional probabilities to model the effects of actions.
- For a specific sequence of actions (e.g., up, right, down, left) computing probabilities for states in the distant future seems complicated.
> Happily, thanks to the Markov property, these computations are not so difficult.

Conditional probability distributions for actions

- Thanks to our Markov assumption, all necessary knowledge about the probabilistic effects of actions is included in our conditional probability tables.
- For example, if $X_{t}=L$, we can write conditional probability distributions for each of the four possible actions.
- In our example scenario, a reasonable distribution could be:

X_{t}	a_{t}	Living Room	Kitchen	Office	Hallway	Dining Room
Living Room	L	1	0	0	0	0
Living Room	\mathbf{R}	0.2	0.8	0	0	0
Living Room	\mathbf{U}	1	0	0	0	0
Living Room	D	0.2	0	0	0.8	0

Conditional probability distributions for actions

- Thanks to our Markov assumption, all necessary knowledge about the probabilistic effects of actions is included in our conditional probability tables.
- For example, if $X_{t}=L$, we can write conditional probability distributions for each of the four possible actions.
- In our example scenario, a reasonable distribution could be:

$>$ Regardless of how we came to be in the Living Room, if we now execute the action move right, we arrive to the Kitchen with probability 0.8, and stay in the Living Room with probability 0.2.

Conditional probability distributions for actions

- Thanks to our Markov assumption, we can encapsulate all necessary knowledge about the probabilistic effects of actions using conditional probability tables.
- For example, if $X_{t}=L$, we can write conditional probability distributions for each of the four possible actions.
- In our example scenario, a reasonable distribution could be:

X_{t+1}						
X_{t}	a_{t}	Living Room	Kitchen	Office	Hallway	Dining Room
Living Room	\mathbf{L}	1	0	0	0	0
Living Room	\mathbf{R}	0.2	0.8	0	0	0
Living Room	\mathbf{U}	1	0	0	0	0
Living Room	\mathbf{D}	0.2	0	0	0.8	0

```
Taken together, these four rows give the Conditional Probability Table for:
- Arriving to the each of the five possible rooms for \(X_{t+1}\)
- Given that
\(\mathrm{X}_{\mathrm{t}}=\) Living Room
- For each possible action \(a_{t}\)
- Left, Right, Up, Down
```

$$
P\left(X_{t+1}=x_{t+1} \mid a_{t}, X_{t}=\text { Living Room }\right)
$$

Conditional probability tables

In the book, you'll find the CPTs for the four actions collected into a very large table.

X1	A1	Living Room	Kitchen	Office	Hallway	Dining Room	
Living Room	L	1	0	0	0	0	
Living Room	R	0.2	0.8	0	0	0	
Living Room	U	1	0	0	0	0	
Living Room	D	0.2	0	0	0.8	0	
Kitchen	L	0.8	0.2	0	0	0	
Kitchen	R	0	1	0	0	0	
Kitchen	U	0	1	0	0	0	
Kitchen	D	0.2	0	0	0	0.8	
Office	L	0	0	1	0	0	
Office	R	0	0	0.2	0.8	0	
Office	U	0	0	1	0	0	
Office	D	0	0	1	0	0	
Hallway	L	0	0	0.8	0.2	0	
Hallway	R	0	0	0	0.2	0.8	
Hallway	U	0.8	0	0	0.2	0	
Hallway	D	0	0	0	1	0	
Dining Room	L	0	0	0	0.8	0.2	
Dining Room	R	0	0	0	0	1	
Dining Room	U	0	0.8	0	0	0.2	
Dining Room	D	0	0	0	0	0	0

This table was constructed by hand, with intuitively reasonable probability values.

If the robot is in the Office, then moving up or moving down will not allow the robot to change rooms.

Conditional probability tables

In the book, you'll find the CPTs for the four actions collected into a very large table.

| X1 | A1 | Living Room | Kitchen | Office | Hallway | Dining Room |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Living Room | L | 1 | 0 | 0 | 0 | 0 |
| Living Room | R | 0.2 | 0.8 | 0 | 0 | 0 |
| Living Room | U | 1 | 0 | 0 | 0 | 0 |
| Living Room | D | 0.2 | 0 | 0 | 0.8 | 0 |
| Kitchen | L | 0.8 | 0.2 | 0 | 0 | 0 |
| Kitchen | R | 0 | 1 | 0 | 0 | 0 |
| Kitchen | U | 0 | 1 | 0 | 0 | 0 |
| Kitchen | D | 0.2 | 0 | 0 | 0 | 0.8 |
| Office | L | 0 | 0 | 1 | 0 | 0 |
| Office | R | 0 | 0 | 0.2 | 0.8 | 0 |
| Office | U | 0 | 0 | 1 | 0 | 0 |
| Office | D | 0 | 0 | 1 | 0 | 0 |
| Hallway | L | 0 | 0 | 0.8 | 0.2 | 0 |
| Hallway | R | 0 | 0 | 0 | 0.2 | 0.8 |
| Hallway | U | 0.8 | 0 | 0 | 0.2 | 0 |
| Hallway | D | 0 | 0 | 0 | 1 | 0 |
| Dining Room | L | 0 | 0 | 0 | 0.8 | 0.2 |
| Dining Room | R | 0 | 0 | 0 | 0 | 1 |
| Dining Room | U | 0 | 0.8 | 0 | 0 | 0.2 |
| Dining Room | D | 0 | 0 | 0 | 0 | 1 |

This table was constructed by hand, with intuitively reasonable probability values.

If the robot is in the Office and moves right, it will stay in the Office (prob $=0.2$) or arrive to the Hallway (prob $=0.8$)

Conditional probability tables

In the book, you'll find the CPTs for the four actions collected into a very large table.

X1	A1	Living Room	Kitchen	Office	Hallway	Dining Room
Living Room	L	1	0	0	0	0
Living Room	R	0.2	0.8	0	0	0
Living Room	U	1	0	0	0	0
Living Room	D	0.2	0	0	0.8	0
Kitchen	L	0.8	0.2	0	0	0
Kitchen	R	0	1	0	0	0
Kitchen	U	0	1	0	0	0
Kitchen	D	0.2	0	0	0	0.8
Office	L	0	0	1	0	0
Office	R	0	0	0.2	0.8	0
Office	U	0	0	1	0	0
Office	D	0	0	1	0	0
Hallway	L	0	0	0.8	0.2	0
Hallway	R	0	0	0	0.2	0.8
Hallway	\mathbf{u}	0.8	0	0	0.2	0
Hallway	D	0	0	0	1	0
Dining Room	L	0	0	0	0.8	0.2
Dining Room	R	0	0	0	0	1
Dining Room	U	0	0.8	0	0	0.2
Dining Room	D	0	0	0	0	1

This table was constructed by hand, with intuitively reasonable probability values.

If the robot is in the Kitchen and moves left, it will stay in the Kitchen (prob $=0.2$) or arrive to the Living Room (prob $=0.8$)

Conditional probability tables

We can construct a conditional probability table for each action using this large table.

X1	A1	Living Room	Kitchen	Office	Hallway	Dining Room
Living Room	L	1	0	0	0	0
Living Room	R	0.2	0.8	0	0	0
Living Room	U	1	0	0	0	0
Living Room	D	0.2	0	0	0.8	0
Kitchen	L	0.8	0.2	0	0	0
Kitchen	R	0	1	0	0	0
Kitchen	U	0	1	0	0	0
Kitchen	D	0.2	0	0	0	0.8
Office	L	0	0	1	0	0
Office	R	0	0	0.2	0.8	0
Office	U	0	0	1	0	0
Office	D	0	0	1	0	0
Hallway	L	0	0	0.8	0.2	0
Hallway	R	0	0	0	0.2	0.8
Hallway	U	0.8	0	0	0.2	0
Hallway	D	0	0	0	1	0
Dining Room	L	0	0	0	0.8	0.2
Dining Room	R	0	0	0	0	1
Dining Room	U	0	0.8	0	0	0.2
Dining Room	D	0	0	0	0	0

- Consider the action move right.
- We construct the conditional probability matrix for this action by collecting the move right rows from the table.

$$
M_{r}=\left[\begin{array}{lllll}
0.2 & 0.8 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.2 & 0.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]
$$

Conditional probability tables

We can construct a conditional probability table for each action using this large table.

| X1 | A1 | Living Room | Kitchen | Office | Hallway | Dining Room |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Living Room | L | 1 | 0 | 0 | 0 | 0 |
| Living Room | R | 0.2 | 0.8 | 0 | 0 | 0 |
| Living Room | U | 1 | 0 | 0 | 0 | 0 |
| Living Room | D | 0.2 | 0 | 0 | 0.8 | 0 |
| Kitchen | L | 0.8 | 0.2 | 0 | 0 | 0 |
| Kitchen | R | 0 | 1 | 0 | 0 | 0 |
| Kitchen | U | 0 | 1 | 0 | 0 | 0 |
| Kitchen | D | 0.2 | 0 | 0 | 0 | 0.8 |
| Office | L | 0 | 0 | 1 | 0 | 0 |
| Office | R | 0 | 0 | 0.2 | 0.8 | 0 |
| Office | U | 0 | 0 | 1 | 0 | 0 |
| Office | D | 0 | 0 | 1 | 0 | 0 |
| Hallway | L | 0 | 0 | 0.8 | 0.2 | 0 |
| Hallway | R | 0 | 0 | 0 | 0.2 | 0.8 |
| Hallway | U | 0.8 | 0 | 0 | 0.2 | 0 |
| Hallway | D | 0 | 0 | 0 | 1 | 0 |
| Dining Room | L | 0 | 0 | 0 | 0.8 | 0.2 |
| Dining Room | R | 0 | 0 | 0 | 0 | 1 |
| Dining Room | U | 0 | 0.8 | 0 | 0 | 0.2 |
| Dining Room | D | 0 | 0 | 0 | 0 | 1 |

- Consider the action move right.
- We construct the conditional probability matrix for this action by collecting the move right rows from the table.

$$
M_{r}=\left[\begin{array}{lllll}
0.2 & 0.8 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.2 & 0.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]
$$

Conditional probability tables

We can construct a conditional probability table for each action using this large table.

$\boldsymbol{X 1}$	A1	Living Room	Kitchen	Office	Hallway	Dining Room
Living Room	L	1	0	0	0	0
Living Room	R	0.2	0.8	0	0	0
Living Room	U	1	0	0	0	0
Living Room	D	0.2	0	0	0.8	0
Kitchen	L	0.8	0.2	0	0	0
Kitchen	R	0	1	0	0	0
Kitchen	U	0	1	0	0	0
Kitchen	D	0.2	0	0	0	0
Office	L	0	0	1	0	0.8
Office	R	0	0	0.2	0.8	0
Office	U	0	0	1	0	0
Office	D	0	0	1	0	0
Hallway	L	0	0	0.8	0.2	0
Hallway	R	0	0	0	0.2	0
Hallway	U	0.8	0	0	0.2	0.8
Hallway	D	0	0	0	1	0
Dining Room	L	0	0	0	0.8	0
Dining Room	R	0	0	0	0	0.2
Dining Room	U	0	0.8	0	0	0
Dining Room	D	0	0	0	0	0

- Consider the action move right.
- We construct the conditional probability matrix for this action by collecting the move right rows from the table.

$$
\begin{gathered}
M_{r}=\left[\begin{array}{ll|lll}
0.2 & 0.8 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.2 & 0.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{array}\right] \\
M_{r}=\left[\begin{array}{cc|cc}
P(L \mid L, r) & P(K \mid L, r) & P(O \mid L, r) & P(H \mid L, r) \\
P(L \mid K, r) & P(K \mid K, r) & P(D \mid L, r) \\
P(O \mid O, r) & P(K \mid O, r) & P(O \mid O, r) & P(H \mid K, r) \\
P(D \mid K, r) \\
P(L \mid H, r) & P(K \mid H, r) & P(H \mid O, r) & P(D \mid O, r) \\
P(L \mid D, r) & P(K \mid D, r) & P(O \mid H, r) & P(H \mid H, r) \\
P(D \mid H, r) \\
P(O \mid D, r) & P(H \mid D, r) & P(D \mid D, r)
\end{array}\right]
\end{gathered}
$$

Posterior probabilities

- Suppose we start in the Office, and execute a sequence of commands $a_{0}, \ldots a_{t}$.
- What should we believe about the state of the robot at time $t+1$?
- The belief state b_{t+1} represents our belief about the state of the robot at time $t+1$.
- The belief state is merely the conditional probability distribution for X_{t+1} given the initial state and all actions that have been executed.
- For each possible value, x_{t+1}, that can be assigned to X_{t+1} we want to determine:

$$
P\left(X_{t+1}=x_{t+1} \mid a_{0}, \ldots a_{t}, X_{0}=x_{0}\right)
$$

- How can we compute this?
- Is it necessary to do a long chain of reasoning all the way back to $t=0$ every time we execute an action?

Posterior probabilities

- Remember the law of total probability:

$$
P(A)=\sum P\left(A \mid B_{t}\right) P\left(B_{t}\right)
$$

- We can condition everything on some context, K_{t}, to obtain:

$$
P\left(A \mid K_{t}\right)=\sum P\left(A \mid B_{t}, K_{t}\right) P\left(B_{t} \mid K_{t}\right)
$$

- Define the context at time t to be $K_{t} \triangleq a_{0}, \ldots a_{t}=K_{t-1}, a_{t}$.
- Let B_{t} be the event $B_{t} \triangleq X_{t}=x_{t}$.
- Let A be the event $A \triangleq X_{t+1}=x_{t+1}$.
- Then we can write

$$
P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid X_{t}=x_{t}, K_{t}\right) P\left(X_{t}=x_{t} \mid K_{t}\right)
$$

Posterior probabilities

- We can rewrite

$$
P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)=\sum P\left(X_{t+1} \mid X_{t}=x_{t}, K_{t}\right) P\left(X_{t}=x_{t} \mid K_{t}\right)
$$

using the fact that $K_{t}=K_{t-1}, a_{t}$:

Posterior probabilities

- We can now apply our Markov assumption to the equation

$$
P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)=\sum_{x_{t}} P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, K_{t-1}, a_{t}\right) P\left(X_{t}=x_{t} \mid K_{t-1}, a_{t}\right)
$$

- Given $X_{t}=x_{t}$, the next state X_{t+1} is conditionally independent of all past actions:
- Furthermore, the action a_{t} does not affect the state X_{t}, and therefore

$$
P\left(X_{t}=x_{t} \mid K_{t-1}, a_{t}\right)=P\left(X_{t}=x_{t} \mid K_{t-1}\right)
$$

Substitute these into the equation above, and we obtain:

$$
P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)=\sum_{x_{t}} P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, a_{t}\right) P\left(X_{t}=x_{t} \mid K_{t-1}\right)
$$

Posterior probabilities

- Let's take a closer look at this result:

How do we know $P\left(X_{t}=x_{t} \mid K_{t-1}\right)$?

Posterior probabilities

- Let's take a closer look at this result:

$$
P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)=\sum_{x_{t}} P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, a_{t}\right) P\left(X_{t}=x_{t} \mid K_{t-1}\right)
$$

For $t=0$, the prior takes the form:

$$
P\left(X_{0}=x_{0} \mid K_{-1}\right)
$$

But we never have $t=-1$, so for the base case at $t=0$, we use the prior on initial state, $P\left(X_{0}=x_{0}\right)$, which gives:

$$
P\left(X_{1}=x_{1} \mid K_{0}\right)=\sum_{x_{0}} P\left(X_{1}=x_{1} \mid X_{0}=x_{0}, a_{1}\right) P\left(X_{0}=x_{0}\right)
$$

We now proceed iteratively to compute $P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)$ for arbitrary t.

Posterior probabilities

- Let's take a closer look at this result:

$$
P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)=\sum_{x_{t}} P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, a_{t}\right) P\left(X_{t}=x_{t} \mid K_{t-1}\right)
$$

The sum is taken over the set of all possible values for x_{t}

$$
\sum_{x_{t} \in\{L, K, O, H, D\}} P\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, a_{t}\right) P\left(X_{t}=x_{t} \mid K_{t-1}\right)
$$

At time t, the state could be any of the rooms, $\{L, K, O, H, D\}$.

Posterior probabilities

- Let's take a closer look at this result:

This equation applies to a specific action, a_{t}, e.g., move up.
If we want to know the probability distribution of X_{t+1} for a different action, e.g., move right, we need to use the equation again.

This equation tells us how to compute the probability that X_{t+1} is in the specific state, $\mathrm{x}_{\mathrm{t}+1} \in\{L, K, O, H, D\}$.
To compute b_{t+1}, we would need to use this equation five time, once for each possible value for X_{t+1}.

Matrix form

- We can write the expression for $P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)$ in a more compact form
- To keep things simple, let's use the action, move right, and compute the probability of arriving to the Living Room:

$$
\begin{aligned}
P\left(X_{t+1}=L \mid K_{t}\right)= & \sum_{x_{t}} P\left(X_{t+1}=L \mid X_{t}=x_{t}, a_{t}=r\right) P\left(X_{t}=x_{t} \mid K_{t-1}\right) \\
= & P\left(X_{t+1}=L \mid X_{t}=L, r\right) P\left(X_{t}=L \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=K, r\right) P\left(X_{t}=K \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=0, r\right) P\left(X_{t}=O \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=H, r\right) P\left(X_{t}=H \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=D, r\right) P\left(X_{t}=D \mid K_{t-1}\right)
\end{aligned}
$$

- We can write this as a simple matrix equation:

Matrix form

- We can write the expression for $P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)$ in a more compact form
- To keep things simple, let's use the action, move right, and compute the probability of arriving to the Living Room:

$$
\begin{aligned}
P\left(X_{t+1}=L \mid K_{t}\right)= & \sum_{x_{t}} P\left(X_{t+1}=L \mid X_{t}=x_{t}, a_{t}=r\right) P\left(X_{t}=x_{t} \mid K_{t-1}\right) \\
= & P\left(X_{t+1}=L \mid X_{t}=L, r\right) P\left(X_{t}=L \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=K, r\right) P\left(X_{t}=K \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=0, r\right) P\left(X_{t}=O \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=H, r\right) P\left(X_{t}=H \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=D, r\right) P\left(X_{t}=D \mid K_{t-1}\right)
\end{aligned}
$$

This is merely one column from the conditional probability matrix for the action move right.

- We can write this as a simple matrix equation:

This row matrix is exactly the prior b_{t}

$$
\left.P\left(X_{t+1}=L \mid K_{t}\right)=\begin{array}{llll}
{\left[\begin{array}{lll}
P\left(X_{t}=L \mid K_{t-1}\right) & P\left(X_{t}=K \mid K_{t-1}\right) & P\left(X_{t}=0 \mid K_{t-1}\right)
\end{array} \quad P\left(X_{t}=H \mid K_{t-1}\right)\right.} & P\left(X_{t}=D \mid K_{t-1}\right)
\end{array}\right]
$$

Matrix form

- We can write a similar expression for each state $X_{t+1} \in\{L, K, O, H, D\}$.
- We can then collect these five equations into a single matrix equation.
- Let $M_{\mathcal{A}}$ denote the conditional probability matrix for action \mathcal{A}.
- Recall, when \mathcal{A} is move right, we have:

$$
M_{r}=\left[\begin{array}{ccccc}
P(L \mid L, r) & P(K \mid L, r) & P(O \mid L, r) & P(H \mid L, r) & P(D \mid L, r) \\
P(L \mid K, r) & P(K \mid K, r) & P(O \mid K, r) & P(H \mid K, r) & P(D \mid K, r) \\
P(L \mid O, r) & P(K \mid O, r) & P(O \mid O, r) & P(H \mid O, r) & P(D \mid O, r) \\
P(L \mid H, r) & P(K \mid H, r) & P(O \mid H, r) & P(H \mid H, r) & P(D \mid H, r) \\
P(L \mid D, r) & P(K \mid D, r) & P(O \mid D, r) & P(H \mid D, r) & P(D \mid D, r)
\end{array}\right]=\left[\begin{array}{ccccc}
0.2 & 0.8 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.2 & 0.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]
$$

- We can now compute $b_{t+1}=P\left(X_{t+1}=L \mid K_{t}\right)$ by combining these equations to obtain:

$$
b_{t+1}=b_{t} M_{r}
$$

Let's take a closer look....

Calculating the belief state

$$
\begin{aligned}
& b_{t+1}=b_{t} M_{r}= \\
& {\left[\begin{array}{llll}
P\left(X_{t}=L \mid K_{t-1}\right) & P\left(X_{t}=K \mid K_{t-1}\right) & \left.P\left(X_{t}=O \mid K_{t-1}\right) \quad P\left(X_{t}=H \mid K_{t-1}\right) \quad P\left(X_{t}=D \mid K_{t-1}\right)\right]
\end{array}\left[\begin{array}{llll}
P(L \mid L, r) & P(K \mid L, r) & P(O \mid L, r) & P(H \mid L, r) \\
P(L \mid L(D \mid L, r) & P(K \mid K, r) & P(|K| K, r) & P(H \mid K, r) \\
P(L \mid O, r) & P(K|O| O, r) & P(O \mid O, r) & P(H \mid O, r) \\
P(D \mid O, r) \\
P(L \mid H, r) & P(K \mid H, r) & P(O \mid H, r) & P(H \mid H, r) \\
P(L \mid D, r) & P(K \mid D, r) & P(O \mid D, r) & P(H \mid D, r) \\
P(D \mid H, r) \\
\hline(D, r)
\end{array}\right]\right.}
\end{aligned}
$$

Let's look at the first entry of b_{t+1}--- the product of b_{t} and the first column of M_{r}.

Calculating the belief state

$$
\begin{aligned}
& b_{t+1}=b_{t} M_{r}= \\
& \begin{array}{l}
b_{t+1}=b_{t} M_{r}= \\
{\left[P\left(X_{t}=L \mid K_{t-1}\right) \quad P\left(X_{t}=K \mid K_{t-1}\right) \quad P\left(X_{t}=0 \mid K_{t-1}\right) \quad P\left(X_{t}=H \mid K_{t-1}\right) \quad P\left(X_{t}=D \mid K_{t-1}\right)\right]\left[\begin{array}{ccccc}
P(L \mid L, r) & P(K \mid L, r) & P(O \mid L, r) & P(H \mid L, r) & P(D \mid L, r) \\
P(L \mid K, r) & P(K \mid K, r) & P(O \mid K, r) & P(H \mid K, r) & P(D \mid K, r) \\
P(L \mid O, r) & P(K \mid O, r) & P(O \mid O, r) & P(H \mid O, r) & P(D \mid O, r) \\
P(L \mid H, r) & P(K \mid H, r) & P(O \mid H, r) & P(H \mid H, r) & P(D \mid H, r) \\
P(L \mid D, r) & P(K \mid D, r) & P(O \mid D, r) & P(H \mid D, r) & P(D \mid D, r)
\end{array}\right]}
\end{array} \\
& \rightarrow P\left(X_{t+1}=L \mid X_{t}=L, r\right) P\left(X_{t}=L \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=K, r\right) P\left(X_{t}=K \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=0, r\right) P\left(X_{t}=O \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=H, r\right) P\left(X_{t}=H \mid K_{t-1}\right)+ \\
& P\left(X_{t+1}=L \mid X_{t}=D, r\right) P\left(X_{t}=D \mid K_{t-1}\right)
\end{aligned}
$$

$>$ This is exactly the computation we performed above!
$>$ This works for each entry of b_{t+1}.

Calculating the belief state

If we execute action \mathcal{A} at time t, the belief state, $b_{t+1}=P\left(X_{t+1}=x_{t+1} \mid K_{t}\right)$, is given by

$$
b_{t+1}=b_{t} M_{\mathcal{A}}
$$

in which $M_{\mathcal{A}}$ is the conditional probability matrix for action \mathcal{A} and b_{t} is the belief state at time t.

Example: Move Right

As we have seen above, if we execute the command move right from the initial state, $x_{0}=$ Office, we obtain

$$
b_{1}=b_{0} M_{r}=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array} 0\right]\left[\begin{array}{ccccc}
0.2 & 0.80 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.2 & 0.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]=\left[\begin{array}{lllll}
0.0 & 0.0 & 0.2 & 0.8 & 0.0
\end{array}\right]
$$

$$
=\left[P\left(X_{1}=L \mid r, X_{0}=0\right), \quad P\left(X_{1}=K \mid r, X_{0}=0\right) \quad P\left(X_{1}=O \mid r, X_{0}=0\right), \quad P\left(X_{1}=H \mid r, X_{0}=O\right) \quad P\left(X_{1}=D \mid r, X_{0}=0\right)\right]
$$

- You can imagine probability mass being pushed to the right by a sloppy worker.
- Only 80% of the probability arrives to the Hallway.

Move right multiple times

If we now again execute the action move right at time $t=1$, we obtain

$$
b_{2}=b_{1} M_{r}=\left[\begin{array}{lllll}
0.0 & 0.0 & 0.2 & 0.8 & 0.0
\end{array}\right]\left[\begin{array}{ccccc}
0.2 & 0.80 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.2 & 0.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]=\left[\begin{array}{llllll}
0.0 & 0.0 & 0.04 & 0.32 & 0.64
\end{array}\right]
$$

Move right multiple times

If we now again execute the action move right at time $t=1$, we obtain

$$
b_{2}=b_{1} M_{r}=\left[\begin{array}{lllll}
0.0 & 0.0 & 0.2 & 0.8 & 0.0
\end{array}\right]\left[\begin{array}{ccccc}
0.2 & 0.80 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.2 & 0.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{array}\right]=\left[\begin{array}{llllll}
0.0 & 0.0 & 0.04 & 0.32 & 0.64
\end{array}\right]
$$

If we execute the action move right n times in succession, we obtain

$$
b_{n}=b_{0} M_{r}^{n}
$$

$>$ As you can imagine, there's a very beautiful theory to systems like this - a combination of linear algebra and probability theory.

Markov chains

- Suppose we have chosen a specific sequence of actions: $a_{0}, \ldots a_{n}$
- At stage $t+1$, we compute the belief b_{t+1} using conditional probability matrix $M_{a_{t}}$ and the prior belief b_{t} :

$$
b_{t+1}=b_{t} M_{a_{t}}=\underbrace{\underbrace{b_{0}}_{b_{2}} M_{b_{0}}^{b_{0}} M_{a_{1}} M_{a_{1}} M_{a_{2}} \ldots M_{a_{t-1}} M_{a_{t}}}_{b_{3}}
$$

Recall that b_{0} is the initial distribution for state, in our example scenario:
$b_{0}=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]$

At any time t, all of the available information about the history of the robot (where it has been, what it has done) is contained in the belief state $\boldsymbol{b}_{\boldsymbol{t}}$.

If you know b_{t}, learning specific previous actions does not add information.

Markov chains

- A sequence of random variables $X_{0}, \ldots X_{n}$ is a Markov chain if the Markov property holds

$$
P\left(X_{t+1} \mid X_{t}, X_{t-1}, \ldots X_{0}\right)=P\left(X_{t+1} \mid X_{t}\right)
$$

- In our case, we have a fixed action sequence $a_{0} \ldots a_{t}$, which defines the distributions for each of the X_{i}.
- For a fixed sequence of actions, the state of our vacuum cleaning robot forms a Markov chain.
- A Markov chain has a simple graphical representation:

Each node includes the distribution b_{t} and each arc corresponds to the computation $b_{t-1} M_{a_{t}}$

Controlled Markov chains

- So far, in our discussions about the Markov chain $X_{0}, \ldots X_{t}$, we have been careful to always add the phrase "for a fixed action sequence $a_{0} \ldots a_{t}$."
- We can think of the actions, $a_{0} \ldots a_{t}$, as control inputs to the system.
$>$ Our choice of $a_{0} \ldots a_{t}$ controls how the system evolves.
$>$ We don't control the actual state X_{t}, but we do control which conditional probability matrix is used to update the belief state.
\square We call this kind of process a controlled Markov chain.
- A controlled Markov chain also has a nice graphical representation:

$$
\begin{aligned}
& \text { Note: } \\
& \text { States are random - circles. } \\
& \text { Actions are deterministic - boxes. }
\end{aligned}
$$

Next Lecture: A Vacuum Cleaning Robot

- Bayes Nets
- Uncertainty in sensing for a sequence of measurements
- Hidden Markov Models (HMM)

