
CS 3630!

Lecture 5: 
A Trash Sorting Robot:               

Perception, Planning,
and Learning



Stay Informed About Robotics@GT

Sign up to the IRIM students e-mail list by visiting:

https://lists.gatech.edu/sympa/subscribe/gtrobotics-students

https://lists.gatech.edu/sympa/subscribe/gtrobotics-students


Quiz and Questionnaire
• First quiz will be released on Thursday, Sept 8, after class:

• Quiz opens in Canvas at 5:00.
• Quiz closes Saturday midnight.

Ø All details for this will be announced via Piazza. If you don’t monitor Piazza for course 
announcements, now is the time to start doing so.



Lecture 4 Recap



Sensing

For our trash sorting robot, we’ll consider three 
sensors:

• Conductivity: A binary sensor that outputs True or 
False, based on measurement of electrical 
conductivity.
• Camera w/detection algorithms: This sensor 

outputs bottle, cardboard, or paper, based on a 
detection algorithm (note: it cannot detect scrap 
metal or cans).
• Scale: Outputs a continuous value that denotes the 

measured weight in kg of the object.

These three kinds of measurements are each treated 
using distinct probabilistic models.



Conditional Probability
• This conditional probability is defined in terms of the joint probability of 𝑥 𝑎𝑛𝑑 𝑦:

𝑃(𝑥 | 𝑦) =
𝑃 𝑥, 𝑦
𝑃 𝑦

Assuming 𝑃 𝑦 ≠ 0

• We can rewrite this expression as:

𝑃(𝑥, 𝑦) = 𝑃(𝑥 | 𝑦) 𝑃(𝑦)

• If X and Y are independent, then 
𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦



Continuous random variables
• Recall the cumulative distribution function (CDF):

𝐹! 𝛼 = 𝑃(𝑋 ≤ 𝛼)

• If 𝐹! is continuous everywhere, then 𝑋 is a continuous random variable.

• If 𝑋 is a continuous random variable with CDF 𝐹! 𝛼 , then the probability 
density function (pdf) for 𝑋 is given by

𝑓! 𝑥 =
𝑑
𝑑𝑥
𝐹! 𝑥

If we think of 𝐹! 𝛼 as probability mass for event 𝑋 ≤ 𝛼, we can think of the derivative of mass as density. 



Computing probabilities
For continuous random variables:

𝑷 𝜶 ≤ 𝑿 ≤ 𝜷 = 4
𝜶

𝜷
𝒇𝑿 𝒖 𝒅𝒖

The probability that 𝜶 ≤ 𝑿 ≤ 𝜷 is equal to 
the area under  the pdf 𝒇𝑿 between 𝜶 and 𝜷.



The Gaussian distribution
• The Gaussian has two defining parameters.
• The mean, 𝜇

• Defines the “location” of the pdf.
• The pdf is symmetric about the mean.

• The variance, 𝜎$
• Defines the “spread” of the pdf.
• Standard deviation is 𝜎.

• The defining equation is given by:

𝑓! 𝑥 =
𝟏

𝝈 𝟐𝝅
𝒆'

𝒙'𝝁 𝟐

𝟐𝝈𝟐



Conditional distributions
• Instead of thinking about five individual pdfs for the different objects, 

we can think of weight as a random variable characterized by 
conditional probability distributions:

Category (C) 𝒇𝑾|𝑪(𝑾|𝑪)

Cardboard 𝑵(𝟐𝟎, 𝝈 = 𝟏𝟎)

Paper 𝑵(𝟓, 𝝈 = 𝟓)

Can 𝑵(𝟏𝟓, 𝝈 = 𝟓)

Scrap metal 𝑵(𝟏𝟓𝟎, 𝝈 = 𝟏𝟎𝟎)

Bottle 𝑵(𝟑𝟎𝟎, 𝝈 = 𝟐𝟎𝟎)

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

𝑓!|- 𝑥|𝐶 = 𝑆𝑐𝑟𝑎𝑝 𝑀𝑒𝑡𝑎𝑙 =
1

10 2𝜋
𝑒'

.'/01 "

2 /11"



Perception

Perception is the process of inferring the state of the 
world (and possibly of the robot itself) using sensor 
measurements and other contextual information.

In this chapter, we consider two approaches to 
perception that use conditional probability 
distributions:
• Maximum Likelihood Estimation
• MAP Estimation

We will also see how to combine measurements from 
multiple sensors (sometimes called sensor fusion) in a 
probabilistic framework.



Sensing vs perception
• Sensor models are forward models.
• Given a description of the world and a model of the sensor,
ØDetermine the conditional probability

𝑃 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑂 𝑆𝑡𝑎𝑡𝑒 𝑆)

• Perception is concerned with the inverse problem.
• Given a set of observations and (possibly extra contextual information),
ØInfer the probability map associated to the world state

𝑃 𝑆𝑡𝑎𝑡𝑒 𝑆 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑂, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡)

• Context could include previous sensor readings, knowledge about the robot’s 
actions, etc.



Bayes theorem
We want to compute:

𝑃 𝑆𝑡𝑎𝑡𝑒 𝑆 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑂, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡)

But we are given 

𝑃 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑂 𝑆𝑡𝑎𝑡𝑒 𝑆)

Bayes derived his famous inversion equation for just this purpose.

Bayes is probably buried here
(Bunhill Fields Cemetery, London).



Bayes Theorem

We know that conjunction is commutative:
𝑃 𝑆, 𝑂 = 𝑃 𝑂, 𝑆

Using the definition of conditional probability:

𝑃 𝑆 𝑂 𝑃 𝑂 = 𝑃 𝑆, 𝑂 = 𝑃 𝑂, 𝑆 = 𝑃 𝑂 𝑆 𝑃 𝑆

𝑃 𝑆 𝑂 𝑃 𝑂 = 𝑃 𝑂 𝑆 𝑃(𝑆)

𝑃 𝑆 𝑂 =
𝑃 𝑂 𝑆 𝑃(𝑆)

𝑃(𝑂)



Bayes Theorem

We know that conjunction is commutative:
𝑃 𝑆, 𝑂 = 𝑃 𝑂, 𝑆

Using the definition of conditional probability:

𝑃 𝑆 𝑂 𝑃 𝑂 = 𝑃 𝑆, 𝑂 = 𝑃 𝑂, 𝑆 = 𝑃 𝑂 𝑆 𝑃 𝑆

𝑃 𝑆 𝑂 𝑃 𝑂 = 𝑃 𝑂 𝑆 𝑃(𝑆)

𝑃 𝑆 𝑂 =
𝑃 𝑂 𝑆 𝑃(𝑆)

𝑃(𝑂)



Example
We roll one die, and an observer tells us things about the outcome.
We want to know if 𝑋 = 4.

• Before we know anything, we believe 𝑃 𝑋 = 4 = D
E.   PRIOR

• Now, suppose the observer tells us that 𝑋is even.   EVIDENCE

𝑃 𝑋 = 4 𝑋 even) = " ! #$#% !& ')"(!&')
"(! #$#%) =

*×!"
!
#
= *

, Bayes

• We could also use Bayes to infer 𝑃 𝑋 = even 𝑋 = 4):

𝑃 𝑋 even 𝑋 = 4) = " !&' ! #$#%)"(! #$#%)
"(!&') =

!
$×

!
#

!
"
= 1 Somewhat less interesting



Interpreting Bayes theorem
• The individual terms on the right-hand side have intuitive interpretations
• We observe 𝑜, and we want to update our belief about 𝑆 based on this 

observation.
• In this case, 
• We can think of 𝑜 as evidence and 𝑃(𝑜) is the probability of observing this particular 

piece of evidence.
• The function ℒ S; o ∝ 𝑃(𝑜|𝑆) is called the likelihood of the state S given 𝑜.
• The probability 𝑃(𝑆) is the prior probability for 𝑆.

𝑃 𝑆|𝑜 =
likelihood ⋅ prior

evidence
=
𝑃 𝑜 𝑆 𝑃 𝑆

𝑃 0

𝑃 𝑆|𝑜 ∝ ℒ 𝑆; 𝑜 𝑃 𝑆 = likelihood ⋅ prior



About likelihoods…
Why do we call the conditional probabilityℒ S; o ∝ 𝑝(𝑜|𝑆) a likelihood, but 
we call 𝑝(𝑆|𝑜) the posterior??

• We define the likelihood ℒ(𝑆; 𝑜) to be a function of 𝑆, not a function of 𝑜, 
i.e., the likelihood is a function of the condition, not the observed event:

ℒ 𝑆; 𝑜 ∝ 𝑝 𝑜 𝑆

• Note:ℒ 𝑆; 𝑜 is not a probability. 
• In particular,  ∑; ℒ 𝑆 = 𝑠; 𝑜 ≠ 1



Example
• For our conductivity sensor, we defined the conditional probabilities 𝑝(𝑂|𝐶) for each category 𝐶.
• The rows in this table represent conditional probabilities of sensor readings given object category.

• The columns in this table represent the likelihood of each category for a given sensor measurement.

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01

Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85

Bottle 0.95 0.05

ℒ 𝐶; 𝐹𝑎𝑙𝑠𝑒 ℒ 𝐶; 𝑇𝑟𝑢𝑒

𝑝(𝑂|𝐶𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑)

𝑝(𝑂|𝑃𝑎𝑝𝑒𝑟)

𝑝(𝑂|𝐶𝑎𝑛𝑠)
𝑝(𝑂|𝑀𝑒𝑡𝑎𝑙)
𝑝(𝑂|𝐵𝑜𝑡𝑡𝑙𝑒)

Conditional probabilities – they sum to one!

Likelihoods of categories – they do not sum to one!

A function of 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝑶! 

A function of 𝑪, parameterized by 
the particular sensor reading, 𝒐! 



Perception

We’ve seen a lot of probability theory in the last minutes. How can we 
use these results to make inferences about the state of the world?

• Maximum Likelihood Estimation – simply use the likelihood
• MAP (Maximum A Posteriori) Estimation – Maximize the posterior 

given the sensor reading.

We’ll look now at each of these.



Maximum likelihood estimation
Recall Bayes law:

𝑃 𝐶 𝑜 = "(-|/)"(/)
"(-)

,        𝑜 = sensor reading, 𝐶 = object category

• Recall that 𝑃(𝑜) does not depend on the category of the object. It merely acts to normalize the posterior 
distribution.

• Suppose all categories are equally probably, i.e., 𝑃 𝐶 = *
0

for each of our 𝑛 Categories.

• We can now write Bayes law in a simple form:

𝑃 𝐶 𝑜 ∝ 𝑃 𝑜 𝐶 ∝ 𝐿 𝐶; 𝑜 ,

Ø In this special case, maximizing the likelihood 𝐿 𝐶; 𝑜 is equivalent to maximizing the posterior probability 
𝑃 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 !



Maximum likelihood Estimation

We	typically	write	the	MLE	problem	as	an	optimization:

𝐶∗ = argmax
R
𝐿(𝐶; 𝑜)

in which the maximization is done w.r.t. the set

C = Cardboard, Paper, Can, Scrap Metal, Bottle

NOTE: For a given measurement, this maximization is super easy – only 
five values to examine.



Likelihood for continuous measurements
Recall that our weight sensor returns a continuous r.v. from a Gaussian distribution:

Category (C) 𝒇𝑾|𝑪(𝑾|𝑪)

Cardboard 𝑵(𝟐𝟎, 𝟏𝟎)

Paper 𝑵(𝟓, 𝟓)

Can 𝑵(𝟏𝟓, 𝟓)

Scrap metal 𝑵(𝟏𝟓𝟎, 𝟏𝟎𝟎)

Bottle 𝑵(𝟑𝟎𝟎, 𝟐𝟎𝟎)

𝑓1|/ 𝑤|𝐶 =
1

𝜎 2𝜋
𝑒2

324 #

56#

𝐿 𝑐; 𝑤 =
1

𝜎[ 2𝜋
𝑒
\ ]\^! "

$_!"

For example,

𝐿 𝑆𝑐𝑟𝑎𝑝 𝑀𝑒𝑡𝑎𝑙; 𝑤 =
1

10 2𝜋
𝑒\

]\D`a "

$ Daa"

The likelihood function for category 𝑐 is given by:

𝑁(𝜇, 𝜎$) denotes the Gaussian 
distribution with mean and std 

deviation 𝜇 𝑎𝑛𝑑 𝜎



Example
• In Section 2.4, you will find code to 

compute the likelihoods for all five 
categories, given a value for weight.
• You can play with this using the 

slider for weight.

For this example, we have chosen 
𝑤 = 50.
• On the left are the five conditional 

probabilities for the categories
• On the right are the likelihood 

values for 𝑤 = 50.

In this example, the maximum 
likelihood estimate is Scrap Metal.𝑤



Example (cont)

• As the weight increases, the maximum likelihood 
category changes from Paper to Can to Cardboard 
to Scrap Metal to Bottle.

• For example, Scrap Metal wins out for a long 
interval between approx. 45g and 270g

• Bottle becomes the MLE above 270g. 

The transition points are known as decision 
boundaries.

These represent the locations in measurement space 
where our ML estimator changes its estimate.

Scrap 
Metal Bottle



MLE solution as a function of weight:



MAP estimation
• The MAP estimate is the category that maximizes the posterior probability of the 

category, 𝐶, given the observation, 𝑜, i.e., 𝐶∗ = argmax
g
𝑃 𝐶 𝑜

• Recall that Bayes gives the posterior as  𝑃 𝐶|𝑜 = h(i|j)h(j)
h(i) ∝ 𝐿(𝐶; 𝑜)𝑃(𝐶)

• Hence, maximizing the posterior is

arg max
[∈g

𝑃 𝑐|𝑜 =arg max
[∈g

𝐿(𝑐; 𝑜)𝑃 𝑐

• and the maximum a posteriori (MAP) estimate is

𝑐∗ = argmax
[∈g

𝐿(𝑐; 𝑜)𝑃(𝑐)



Sensor fusion
• Suppose we have measurements from two sensors, say 𝑧D and 𝑧$.
• How can we combine these measurements? 
• We can still apply Bayes law:

𝑃 𝐶h𝑧D, 𝑧$ =
𝑃(𝑧D, 𝑧$|𝐶)𝑃(𝐶)

𝑃(𝑧D, 𝑧$)
= 𝜂𝑃(𝑧D, 𝑧$|𝐶)𝑃(𝐶)

• But what do we do with 𝑃(𝑧D, 𝑧$|𝐶)?

• We haven’t seen anything like conditional joint probabilities yet…



Conditional independence
• If we don’t know the category, then measuring 𝑍Dmight influence what we expect for 𝑍$.
• For example, if the object weight is small, we might expect that the object conductivity will be 

False, since Paper or Cardboard would be likely in this case. 
• However, if we knew the object category, then observing 𝑍Dwould not influence what we 

expect for 𝑍$.
• If we know the object is paper, it’s weight will not change our expectation that conductivity 

will be False.
• This property is known as conditional independence.

• We say that two random variables, say 𝑍D and 𝑍$, are conditionally independent given 𝐶,  if

𝑃 𝑍D, 𝑍$ 𝐶 = 𝑃 𝑍D 𝐶 𝑃(𝑍$|𝐶)



Sensor fusion
• It is straightforward to combine sensor measurements 𝑧D and 𝑧$ if they are 

conditionally independent:

𝑃 𝐶h𝑧D, 𝑧$ = 𝜂𝑃 𝑧D 𝐶 𝑃 𝑧$ 𝐶 𝑃 𝐶
= 𝐿 𝐶; 𝑧D 𝐿 𝐶; 𝑧$ 𝑃(𝐶)

• The posterior is proportional to the product of the likelihoods, weighted by the prior.

• The MAP estimate is now given by:

𝐶∗ = argmax
g
𝐿 𝐶; 𝑧D 𝐿 𝐶; 𝑧$ 𝑃(𝐶)

Ø This idea can be extended to arbitrarily many sensor measurements.



Planning

Planning is easy for the trash sorting robot.
• Any action can be executed at any time.
• Execution of actions has no effect on future actions.
Ø A “plan” is merely a single action, taken right now.

We’ll see four approaches:
• Maximize probability of making the right action 

using only prior information
• Minimizing worst-case cost using only prior 

information
• Minimizing expected cost using only prior 

information
• Incorporating sensor data



Relying on priors
• If we don’t have any sensors available, the simplest decision-making strategy is to 

merely maximize the probability of choosing the right action.

Category P(C) Right
Action

cardboard 0.20 Paper Bin

paper 0.30 Paper Bin

can 0.25 Metal Bin

scrap 
metal

0.20 Metal Bin

bottle 0.05 Glass Bin

Based on our priors:
• Placing trash in the paper bin would be the right 

action 50% of the time.
• Placing trash in the metal bin would be the right 

action 45% of the time.
• Placing trash in the glass bin would be the right action 

5% of the time.

Ø Always place trash in the paper bin to maximize the 
probability of doing the right thing.

• BUT… this approach doesn’t take costs into account.
• Suppose putting paper in the metal bin could destroy trash sorting equipment.
Ø We can do better…



Minimizing worst-case outcomes
In order to account for the cost of  taking the wrong actions, we assigned a cost to each 
action for each category:

A conservative approach to decision making is to choose an 
action that minimizes the worst-case costs.

From the table, we see that the worst-case costs are as 
follows:
• Glass bin: 6
• Metal bin: 2
• Paper bin: 10
• Nop: 1

If we want to minimize the worst-case cost, we simply 
choose Nop, whose cost never exceeds 1.

This approach is very conservative indeed. Now, rather than take any risk, the robot 
merely stands motionless, letting each piece of trash pass along to human operators.



Minimizing expected cost
• If the robot will operate for a prolonged period of time, we might prefer to minimize the average cost 

over a long time horizon.

• We’ve seen how to do this using the concept of expectation.
• Let 𝑐𝑜𝑠𝑡 𝑎, 𝑐 denote the cost of applying action 𝑎 to an object of category 𝑐.

Simply compute the expected cost for applying each action 
under the prior distribution on categories, as we have seen in 
a previous lecture.

Now it’s a simple matter to see that placing the object in the 
metal bin is the action that minimizes the expected cost.

𝐸 𝑐𝑜𝑠𝑡(𝑎, 𝐶) = l
[∈m

𝑐𝑜𝑠𝑡 𝑎, 𝑐 𝑃(𝐶 = 𝑐)



Incorporating sensor data
To incorporate sensor data, we merely modify the expectation above so to use 𝑃(𝐶 = 𝑐|𝑂 = 𝑜)
instead of the prior 𝑃 𝐶 = 𝑐 . This is called the conditional expectation.

𝐸 𝑐𝑜𝑠𝑡 𝑎, 𝐶 |𝑂 = 𝑜 = l
[∈m

𝑐𝑜𝑠𝑡 𝑎, 𝑐 𝑃(𝐶 = 𝑐|𝑂 = 𝑜)

Choosing the best action can now be framed as a minimization problem:

𝑎∗ = argmin
n
𝐸 𝑐𝑜𝑠𝑡 𝑎, 𝐶 |𝑂 = 𝑜

Note that the observation  S = o, is given, and the expectation is taken with 
respect to the random category C. 



Multiple sensors
If we have multiple sensor readings, say 𝑍D = 𝑧D, … 𝑍o = 𝑧o we merely condition 
on the joint event:

𝐸 𝑐𝑜𝑠𝑡 𝑎, 𝐶 |𝑍D = 𝑧D, … 𝑍o = 𝑧o = l
[∈m

𝑐𝑜𝑠𝑡 𝑎, 𝑐 𝑃(𝐶 = 𝑐|𝑍D = 𝑧D, … 𝑍o = 𝑧o)

If the sensor data are conditionally independent given the category 𝐶, this 
computation can be factored, as we saw earlier. 

𝑎∗ = argmin
n
𝐸 𝑐𝑜𝑠𝑡 𝑎, 𝐶 |𝑍D = 𝑧D, … 𝑍o = 𝑧o

Choosing the best action can again be framed as a minimization problem:



Learning

In this chapter, all of the useful information is 
characterized using probability distributions.
We’ll see how to use statistical methods to estimate 
parameters of probability distributions:
• General definitions for mean and variance (not just 

for the Gaussian case)
• Estimating the mean and variance
• Unbiased estimators



Learning probability distributions

If the real world can be characterized by probability distributions, the obvious 
question is 

“How do we know what is the right probability distribution?”

We’ll answer this in two steps:
1. Develop a set of parameters that characterizes a probability distribution.
2. Develop methods to estimate those parameters from data.



The mean, 𝜇
• For a discrete probability distribution with pmf 𝑝!, the mean, 𝝁, is defined as

𝜇 = 𝐸 𝑋 =(
"#$

%

𝑥" 𝑝!(𝑥")

• For a continuous distribution, the mean is defined as

𝜇 = 𝐸 𝑋 = ,𝑥𝑓!(𝑥)𝑑𝑥

• For a Gaussian distribution, we have

,𝑥𝑓!(𝑥)𝑑𝑥 = ,𝑥
1

𝜎 2𝜋
𝑒&

'&( %

)*% 𝑑𝑥 = 𝜇

Ø For a Gaussian distribution, the parameter 𝝁, the mean, is equal to 𝑬 𝑿 ! 

With a little help from a friend in 
an advanced calculus class.



Estimating the mean
• The mean is one of the two parameters of a Gaussian distribution.
• In fact, the mean is a valuable piece of information about every distribution we will encounter.
Ø It’s worth spending some time developing a method to estimate 𝜇.

You all know the usual estimator. For a data set {𝑥p}pqD,r, the estimate 𝜇̂ is given by

𝜇̂ = D
r
∑𝑥p

Is this a good estimator?
How can we know if it’s a good estimator?
What properties should a good estimator have?



Unbiased estimators
• Definition: The estimator X𝜇 is said to be an unbiased estimator of the mean 𝜇 if 𝐸 X𝜇 = 𝜇.
• On average, over many trials, X𝜇 will be a good approximation of 𝜇.

• Is our estimator unbiased?  Let’s see.

𝐸[ X𝜇] = E[
1
𝑁
∑𝑋7]

• Luckily, Expectation is linear!
E ∑𝛼7𝑋7 = ∑𝛼7𝐸[𝑋7]

• Therefore:

E
1
𝑁∑𝑋7 =

1
𝑁∑𝐸 𝑋7 =

1
𝑁∑𝜇 =

1
𝑁𝑁𝜇 = µ

Øs𝛍 = 𝟏
𝐍∑𝐱𝐢 is an unbiased estimator of the mean of a distribution!

• We never used any property of the specific distribution.
Ø This works for both continuous and discrete random variables (replace sums by integrals)!

There’s a lot of 
good news on 
this slide!



Expectation is linear (an aside)
Expectation is linear:     𝑬 ∑𝜶𝒊𝑿𝒊 = ∑𝜶𝒊𝑬[𝑿𝒊]
Sketch of proof (for two rv’s):

𝐸 𝛼𝑋 + 𝛽𝑌 = ∑7∑9 𝛼𝑥7 + 𝛽𝑦7 𝑝!:(𝑥7, 𝑦9)

= ∑7∑9 𝛼𝑥7𝑝!:(𝑥7, 𝑦9) + ∑7∑9 𝛽𝑦9𝑝!:(𝑥7, 𝑦9)

= 𝛼 ∑7 𝑥7 ∑9 𝑝!:(𝑥7, 𝑦9) + 𝛽 ∑9 𝑦9 ∑7 𝑝!:(𝑥7, 𝑦9)

= 𝛼 ∑7 𝑥7𝑝!(𝑥7) + 𝛽 ∑9 𝑦9𝑝:(𝑦9)

= 𝛼𝐸 𝑋 + 𝛽𝐸[𝑌]

Two random variables, 𝑋 and 𝑌, with joint pmf 𝑝&'

Apply distributivity

Factor the sums

The marginal distribution 𝑝& is given by ∑( 𝑝&'(𝑥) , 𝑦(),
i.e., “integrate” out the 𝑦 part of the distribution.

Apply the definition of expectation.

We can easily extend this to continuous r.v.’s by replacing summations with integrals, and pmf’s by pdf’s.



Variance
• Consider a random variable with mean µ.
• The variance, 𝜎$, is defined as the expected value of the squared distance to the mean:

𝜎$ = 𝐸[ 𝑋 − 𝜇 $]

• For a Gaussian distribution, we have

, 𝑥 − 𝜇 )𝑓!(𝑥)𝑑𝑥 = , 𝑥 − 𝜇 ) 1
𝜎 2𝜋

𝑒&
'&( %

)*% 𝑑𝑥 = 𝜎)
With a lot of help from a friend in 
an advanced calculus class.

Ø For a Gaussian distribution, it’s not a coincidence that we use the term variance for the 
parameter 𝝈𝟐



Estimating the variance
• The obvious way to estimate the variance is to merely calculate the average of the squared 

distance of the 𝑥p from 𝜇̂:

{𝜎y
$ =

1
𝑁
∑ 𝑥p − 𝜇̂ $

• Is this an unbiased estimate? (Hint: Notice the subscript.)

𝐸[ }𝜎y
$] = 𝐸

1
𝑁
∑ 𝑥p − 𝜇̂ $ =

𝑁 − 1
𝑁

𝜎$ < 𝜎$

• This estimate is biased, but it’s easy to fix:

}𝜎$ =
1

𝑁 − 1
∑ 𝑥p − 𝜇̂ $



Biased estimate of variance (an aside)

*See Wikipedia Bias of an estimator, or your favorite statistics book.

Use every algebra trick you know…



Biased estimate of variance (an aside)

*See Wikipedia Bias of an estimator, or your favorite statistics book.

Use every algebra trick you know…

Expectation is linear.

The term 𝑥) − 𝜇̂ $ is not linear.

And that’s why we need all of this algebra…. 



Learning a Gaussian distribution
• A Gaussian distribution is completely specified by its mean and variance, which is why we can 

write 𝑁 𝜇, 𝜎$ . Once we know 𝜇, 𝜎$, there is nothing more to know.

• In this case, 𝜇̂ and }𝜎$ are said to be sufficient statistics. 

• For a Gaussian distribution, there’s simply nothing more to know, so estimating other 
quantities will not increase or knowledge about the underlying distribution.

}𝜎$ =
1

𝑁 − 1
∑ 𝑥p − 𝜇̂ $h𝜇 = /

h
∑𝑥i

• In a typical statistics class, you’ll spend some time studying various distributions, determining sufficient 
statistics for those distributions, deriving the corresponding unbiased estimators.

Ø Not in this class.



Next Lecture:  A Vacuum Cleaning Robot

• Simple state space: collection of rooms in a house
• Uncertainty in actions: Markov Decision Process (MDP)
• Uncertainty in sensing for a sequence of measurements: Hidden Markov Model (HMM)
• Planning using Value Iteration
• Reinforcement Learning (RL)


