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Lecture 4: 
A Trash Sorting Robot:               

Sensing



Lecture 3 Recap



A Trash Sorting Robot
Our first example is a trash sorting robot.

Individual pieces of trash arrive to the 
robot’s work cell on a conveyor belt.
The robot’s task is to place each piece of 
trash in an appropriate bin:
• Glass

• Mixed paper

• Metal
• Nop

Sensors measure various characteristics of 
the trash, which are used to make inferences 
about the object type (perception).

We assume sensor uncertainty, but perfect 
execution of actions.

Over time, sensor models can be refined 
using machine learning methods.



Modeling the 
World State

For this problem, the only interesting aspect of the 
world state is the specific material composition of 
the item of trash that is currently in the robot’s work 
cell.
We consider five possibilities:
• Cardboard
• Paper
• Cans
• Scrap Metal
• Bottles
For this chapter, we assume that there are no other 
possibilities.
You should probably just memorize these now, 
because they’re going to be used a lot in this chapter.



A few concepts from probability

Category (𝝎) 𝑷({𝝎})

Cardboard 0.20

Paper 0.30

Cans 0.25

Scrap Metal 0.20

Bottle 0.05

In probability theory, 
• The set Ω is called the sample space.
• Each 𝜔 ∈ Ω is called an outcome.
• A subset 𝐴 ⊂ Ω is called an event.

Three Axioms of Probability Theory:
1. For A ⊂ Ω, P(A) ≥ 0
2. P(Ω) =1 The	probability	that	something	happened	is	1.
3. For A', A( ⊂ Ω, if	A' ∩ A( = ∅,	then 𝑃 𝐴) ∪ 𝐴* = 𝑃 𝐴) + 𝑃 𝐴*

To compute the probability for event A ⊂ Ω,

𝑷 𝑨 = G
𝝎∈𝑨

𝑷( 𝝎 )

Prior Distribution 
on Categories



Actions

For this problem, the robot either places an item of 
trash into one of three bins, or lets the item pass 
through the work cell. 
This gives four possible actions:
• 𝑎-:  Glass Bin
• 𝑎.: Metal Bin
• 𝑎/: Paper Bin
• 𝑎0: Nop (let object pass through the workcell)

For this chapter, we assume that actions are executed 
without error, every time.
However, since we don’t know with certainty the 
category for an item of trash in the work cell, the 
efficacy of an action is also uncertain.



Expectation

If a r.v. 𝑋 takes its values from a finite set, 𝑋 ∈ {𝑥-, … , 𝑥1}, the expected value of 𝑋, 
denoted 𝑬 𝑿 , is defined by:  

𝐸 𝑋 =$
!"#

$

𝑥! 𝑝%(𝑥!)

• Expectation is a property of a probability distribution
• 𝑬 𝑿 is not the value you should expect to see for any specific 

outcome!!



Probability vs Statistics
• Probability theory is the study of a certain class of mathematical 

functions (probability distributions).

• A statistic is any function of data (including the identity function), and 
statistics is the study of such functions.

𝐸 𝑋 =G
)2-

1

𝑥) 𝑝3(𝑥)) 𝑐𝑜𝑠𝑡4 =
1
𝑁
G
)2-

5

𝑐)

𝐸 𝑋 is a property of 𝑝3 𝑥)
ØProbability Theory

𝑐𝑜𝑠𝑡4 is a function of data, 𝑐)
Ø Statistics



Probability Theory and Statistics
The connections between probability theory and statistics are often 
formalized by theorems that express variations on a simple concept:

As the size of a data set becomes large, the statistics of that data set 
will become increasingly good approximations for various properties of 
the underlying probability distribution from which the data set was 
generated.

• This is one of the reasons simulation by sampling works.
• These theorems are important for statistical inference, machine learning, 

and many other problems that involve data drawn from stochastic 
systems.



Sensing

For our trash sorting robot, we’ll consider three 
sensors:

• Conductivity: A binary sensor that outputs True or 
False, based on measurement of electrical 
conductivity.
• Camera w/detection algorithms: This sensor 

outputs bottle, cardboard, or paper, based on a 
detection algorithm (note: it cannot detect scrap 
metal or cans).
• Scale: Outputs a continuous value that denotes the 

measured weight in kg of the object.

These three kinds of measurements are each treated 
using distinct probabilistic models.



Some concepts from probability theory

Before we describing sensors and how we model uncertainty in 
sensing, we’ll need a few new concepts from probability theory:
• Joint Distributions
• Conditional Probability
• Independence

We’ll introduce these concepts with simple examples before describing 
how to model the sensors for our trash sorting robot.



Joint Probability
Consider two events, 𝑋, 𝑌 ⊂ Ω. The joint probability of 𝑋 𝑎𝑛𝑑 𝑌 is the 
probability that both events occur.

• When we talk about a joint probability distribution, we use the 
notation P(𝑋, 𝑌), indicating that 𝑋 𝑎𝑛𝑑 𝑌 are random events.

• When we talk about the joint probability for two specific events, we 
write

𝑃 𝑋 = 𝑥 and 𝑌 = 𝑦 = 𝑃 𝑥, 𝑦

ü Recall, upper case denotes a random event, and lower case denotes 
a specific value.



An Example
Roll two dice, observe 𝑥-and 𝑥..
We know that there are 36 possible outcomes, all of which are equally likely (assuming the 
dice are fair).
It’s easy to compute probabilities by simply counting outcomes:
• Probability 𝑥- = 6: 

6,1 , 6,2 , 6,3 , 6,4 , 6,5 , (6,6) → 𝑃 =
6
36

=
1
6

• Probability 𝑥#is even:

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

→ 𝑃 =
18
36

=
1
2



An Example
Roll two dice, observe 𝑥-and 𝑥..
Now suppose we want to know the probability that two events occur.
Again, we can compute probabilities simply by counting outcomes (since all outcomes are 
equally probable).

• Probability 𝑥- = 6 and 𝑥. is even:
6,2 , 6,4 , (6,6) → 𝑃 =

3
36

=
1
12

• Probability 𝑥-is even and 𝑥- > 3:

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

→ 𝑃 =
12
36 =

1
3



Conditional Probability
• When two events are related to one another, observing the occurrence of one of the 

events can influence what we believe about the other.

• In this case, we talk about the conditional probability of x given y, denoted 𝑃(𝑥 | 𝑦).

• This conditional probability is defined in terms of the joint probability of 𝑥 𝑎𝑛𝑑 𝑦:

𝑃(𝑥 | 𝑦) =
𝑃 𝑥, 𝑦
𝑃 𝑦

Assuming 𝑃 𝑦 ≠ 0

• We can rewrite this expression as:

𝑃(𝑥, 𝑦) = 𝑃(𝑥 | 𝑦) 𝑃(𝑦)

This form will come in handy a bit later in the class



Independence

• If X and Y are independent, then 
𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦

• If X and Y are independent, then

𝑃(𝑥 | 𝑦) = 6 7,9
6 9 = 6 7 6 9

6 9 = 𝑃(𝑥)

• Sensors are useful because their measurements depend on the world state.

• However, if we have multiple sensors, quite often there are independence properties for 
various combinations of sensors. For example, a color sensor might give a measurement 
that is independent of the measurement given by a scale.

Definition of Independence 



Let’s apply rules of conditional and joint probabilities:
From the previous page, we easily compute the following:

𝑃 𝑥- 𝑒𝑣𝑒𝑛 =
1
2
, 𝑃 𝑥- == 6 =

1
6
, 𝑃 𝑥. 𝑒𝑣𝑒𝑛 =

1
2
.

Let’s look at some combinations of events:

• 𝑃 𝑥- 𝑒𝑣𝑒𝑛, 𝑥- == 6 = -
:
≠ 𝑃 𝑥- 𝑒𝑣𝑒𝑛 𝑃 𝑥- == 6 = -

:
× -
.
= -

-.
→ NOT independent

• 𝑃 𝑥- 𝑒𝑣𝑒𝑛, 𝑥. 𝑒𝑣𝑒𝑛 = ;
/:
= 𝑃 𝑥- 𝑒𝑣𝑒𝑛 𝑃 𝑥. 𝑒𝑣𝑒𝑛 = -

.
× -
.
→ independent



Let’s apply rules of conditional and joint probabilities:

𝑃 𝑥! == 6|𝑥! 𝑒𝑣𝑒𝑛 = "($! %&%', $!))*)
"($! %&%')

=
!
"
!
#
= !

,

This agrees with our intuition, since x- = 6 in one third of the cases 
of x- being even:

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)



Binary Sensors

• Consider a simple conductivity sensor.
• In an ideal world, the sensor would return the value True when the object category is 

either scrap metal or can, and the value False for paper, cardboard and bottle.
• In the real world, metal cans can be dirty causing the sensor to return False, even though 

metal cans conduct electricity. 
• There are numerous reasons that a binary sensor could return the wrong value for any of 

the five categories, but what is more interesting than the cause of the error is the 
probability associated to the error.
• What is the probability that the sensor will return True for a metal can? False for a piece 

of cardboard? True for a bottle? Etc….
ØIf we know these probabilities, we can reason about the object category based on 

sensor reading!



Conditional probability revisited
• Conditional probabilities provide a way to quantify the probabilities associated 

with correct/incorrect sensor readings.
• For each of the five categories, we estimate the probability of True and False.
• We collect these values into a conditional probability table (CPT):

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01

Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85

Bottle 0.95 0.05

Given that the object is cardboard, the probability of False is 0.99.

Given that the object is scrap metal, the probability of True is 0.85.

Each entry in the table is a conditional probability value. The conditioning event is the category.



Some things to remember
• For a fixed category 𝐶, the conditional probability 𝑃 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦|𝐶 is itself a probability!
• Therefore:

𝑃 𝑇𝑟𝑢𝑒|𝐶 = 1 − 𝑃 𝐹𝑎𝑙𝑠𝑒|𝐶
ØBecause of this fact, each row in the table sums to one!

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01

Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85

Bottle 0.95 0.05

• We can think of the category 𝐶 as defining a 
particular context.

• The conditional probability for an outcome tells us 
the probability of that outcome in a specific context.

• If the context is “a piece of cardboard is in the work 
cell,” then the probability of False is 0.99.

Ø If we think of 𝒇 𝑪 = 𝑷 𝑪𝒐𝒏𝒅|𝑪 as a function of 𝑪, then 𝒇 𝑪 is NOT a probability.
Ø Note that the columns do Not sum to one. (more about this soon…)



How do we know the conditional probabilities?
• In practice, it is not possible to know the conditional probabilities.
• It may even be the case that these probabilities change over time.
• We can determine the conditional probability values by:

A. Reasoning about the physics of the sensor, combining intuition with physical laws to 
arrive to reasonable guesses for these values

B. Gathering lots of data, and estimating the conditional probabilities using relative 
frequency (aka histograms):
1. Collect 𝑁 conductivity measurements on pieces of cardboard.
2. Let 𝑁!"#$ be the number of times the sensor returns true.
3. 𝑃 𝑇𝑟𝑢𝑒|𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 = %!"#$

%
, 𝑃 𝐹𝑎𝑙𝑠𝑒|𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 = %&%!"#$

%
4. Repeat for each category.

C. Reading the data sheet that was shipped with the sensor (in this case, the 
manufacturer used either A or B). 



Multi-valued sensors
• We could consider a binary sensor as a device that returns a value from a set 

𝑋 ∈ 𝑥!, 𝑥" = 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 .

• If we take this view, it’s a simple matter to extend our approach to any set of discrete outcomes: 𝑋 ∈ 𝑥!, … , 𝑥# .
• For our trash sorting robot, we have a computer vision sensor that returns a value 

• X ∈ 𝑏𝑜𝑡𝑡𝑙𝑒, 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟 .

• Each possible outcome gives rise to one column in our CPT for the sensor:

• As before, each entry is 𝑃 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦).
• Do not confuse the Category and the DetectorReading, even if they 

share the same name!
• Note that each row still sums to one.
• For cans and scrap metal, this detection sensor becomes confused, and 

returns one of the three values at random, each with probability of  !
"
.



The value of multiple sensors
• The Conductivity sensor 
• does a good job of discriminating between the events 𝑏𝑜𝑡𝑡𝑙𝑒, 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟

and 𝑠𝑐𝑟𝑎𝑝 𝑚𝑒𝑡𝑎𝑙, 𝑐𝑎𝑛 ,
• but is unable to resolve ambiguity in either of these events.

• The computer vision sensor 
• does a good job of discriminating between 𝑏𝑜𝑡𝑡𝑙𝑒, 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟 ,
• but is useless for 𝑠𝑐𝑟𝑎𝑝 𝑚𝑒𝑡𝑎𝑙, 𝑐𝑎𝑛 .

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01

Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85

Bottle 0.95 0.05

We’ll see how to combine 
information from 
different sensors soon.

Conductivity Sensor Computer Vision Sensor



Continuous random variables
• Recall the cumulative distribution function (CDF):

𝐹% 𝛼 = 𝑃(𝑋 ≤ 𝛼)

• If 𝐹% is continuous everywhere, then 𝑋 is a continuous random variable.

• If 𝑋 is a continuous random variable with CDF 𝐹% 𝛼 , then the probability 
density function (pdf) for 𝑋 is given by

𝑓% 𝑥 =
𝑑
𝑑𝑥
𝐹% 𝑥

If we think of 𝐹# 𝛼 as probability mass for event 𝑋 ≤ 𝛼, we can think of the derivative of mass as density. 



The uniform distribution
• The uniformly distribution is the simplest example of a continuous random 

variable.
• We saw this distribution in our sampling algorithm.
• We use the notation 𝑋~𝑈(𝑎, 𝑏) to denote that 𝑋 is a continuous random 

variable with uniform distribution on the interval 𝑎, 𝑏 .
• The pdf for such a r.v. is given by:

pdf for the uniform distribution



Computing probabilities
Applying the fundamental theorem of calculus, we obtain:

>
'

(
𝑓) 𝑢 𝑑𝑢 = 𝐹) 𝛽 − 𝐹)(𝛼)

= 𝑃 𝑋 ≤ 𝛽 − 𝑃 𝑋 ≤ 𝛼

= 𝑃 𝛼 ≤ 𝑋 ≤ 𝛽
which gives

𝑷 𝜶 ≤ 𝑿 ≤ 𝜷 = >
𝜶

𝜷
𝒇𝑿 𝒖 𝒅𝒖

The probability that 𝜶 ≤ 𝑿 ≤ 𝜷 is equal to the area under  the pdf 𝒇𝑿 between 𝜶 and 𝜷.



In pictures:
• 𝑋 takes on values in the continuum.

• 𝑝(𝑥), is a probability density function.

What happens when 𝑎 = 𝑏?

Since 𝑓 is continuous

|
=

=
𝑓 𝑢 𝑑𝑢 = 0

This leads to the possibly surprising result:

𝑃 𝑋 = 𝑎 = 0

for any scalar 𝑎.



More about pdf’s

@
EF

F
𝑓% 𝑢 𝑑𝑢 = 𝐹% ∞ − 𝐹% −∞ = 1 − 0 = 1

But the magnitude of 𝑓3 𝑢 can take any non-negative value – so long as the total 
area under the curve integrates to one! 

x

f(x)
Magnitude of curve could be greater 
than 1 in some areas.  The total area 
under the curve must add up to 1.

The total area under a pdf equals 1, always, for every pdf.



The uniform distribution (again)
• It is now easy to understand why the “height” of the pdf is   #

GEH
:

𝟏 = 𝑷 𝒂 ≤ 𝑿 ≤ 𝒃 = |
𝒂

𝒃
𝑲 𝒅𝒖 = 𝑲𝒃 −𝑲𝒂 → 𝑲 =

𝟏
𝒃 − 𝒂

In this case, the geometry of rectangles is 
enough to tell us the answer:

𝐴𝑟𝑒𝑎 = 𝐾 𝑏 − 𝑎

So, if 𝐴𝑟𝑒𝑎 = 1, then we must have

𝑲 = 𝟏
𝒃A𝒂

𝑲



The uniform distribution’s CDF
• It’s easy to compute the CDF for the uniform distribution given its pdf. 
• For 𝑎 ≤ 𝛽 ≤ 𝑏 , simply evaluate the integral

𝐹) 𝛽 = 𝑃 𝑋 ≤ 𝛽 = >
-

( 1
𝑏 − 𝑎 𝑑𝑢

1. For 𝑎 ≤ 𝛽 ≤ 𝑏 the integral evaluates to  𝜷&𝒂
𝒃&𝒂

.
2. For 𝛽 ≤ 𝑎 , we have 𝐹) 𝛽 = 0.
3. For 𝑏 ≤ 𝛽 , we have 𝐹) 𝛽 = 1.

𝜷

Notice that the CDF is continuous everywhere, even 
though the pdf has discontinuities at 𝒂 and 𝒃.



The Gaussian(aka normal) distribution

The Gaussian distribution is the most 
famous of all probability distributions, so 
famous that the Germans put Gauss and his 
pdf on their money!

Even if you haven’t seen this in a probability 
theory or statistics class, you have likely seen 
the famous Bell Curve.



The Gaussian distribution
• The Gaussian has two defining parameters.
• The mean, 𝜇
• Defines the “location” of the pdf.
• The pdf is symmetric about the mean.

• The variance, 𝜎I
• Defines the “spread” of the pdf.
• Can be specified also in terms of standard deviation, 𝜎.

• The defining equation is given by:

𝑓% 𝑥 =
𝟏

𝝈 𝟐𝝅
𝒆E

𝒙E𝝁 𝟐

𝟐𝝈𝟐 =
1

𝜎 2𝜋
𝑒E

#
I
NEO
P

"



The Gaussian distribution
Let’s take a closer look:

• The leading term, #
P IQ

, is a normalizing term, so that ∫EF
F #

P IQ
𝑒E

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓% 𝑥 = 𝐾𝑒E
#
IP" NEO "



The Gaussian distribution
Let’s take a closer look:

• The leading term, #
P IQ

, is a normalizing term, so that ∫EF
F #

P IQ
𝑒E

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓% 𝑥 = 𝐾𝑒E
#
IP" NEO "

𝒇𝑿is a decreasing exponential function.



The Gaussian distribution
Let’s take a closer look:

• The leading term, #
P IQ

, is a normalizing term, so that ∫EF
F #

P IQ
𝑒E

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓% 𝑥 = 𝐾𝑒E
#
IP" NEO "

𝒇𝑿 decreases exponentially with the square of the distance to the mean.



The Gaussian distribution
Let’s take a closer look:

• The leading term, #
P IQ

, is a normalizing term, so that ∫EF
F #

P IQ
𝑒E

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓% 𝑥 = 𝐾𝑒E
#
IP" NEO "

The “rate” of decrease depends on 𝝈𝟐:
• If 𝝈𝟐 is very large, 𝑓3 decreases slowly, thus, a wide spread.
• If 𝝈𝟐 is very small, 𝑓3 decreases quickly, thus, a narrow peak.



The Gaussian Distribution

𝒇𝑿 𝒙 =
𝟏

𝝈 𝟐𝝅
𝒆E

𝒙E𝝁 𝟐

𝟐𝝈𝟐

• Since the Gaussian is parameterized by its mean and variance, we often write 𝑁(𝜇, 𝜎.) to 
denote the Gaussian distribution.

• The special case when 𝝁 = 𝟎, 𝝈𝟐 = 𝟏 is called the standard normal distribution (the red 
curve in the figure).



The Gaussian distribution
The standard deviation is a handy way to characterize probabilities.
• Approximately 68% of the probability mass lies within one standard deviation of the mean.
• Approximately 99.99966% of the probability mass lies within six standard deviations of the 

mean (for business majors, six sigma is a big thing).



The weight sensor (aka scale)
• The weight of an object can be considered as a continuous random variable.
• The Gaussian distribution would be a reasonable choice, except for the fact 

that weight can never be less than zero. Nevertheless, we’ll use the Gaussian 
distribution to model weight.
• Each object has its own Gaussian distribution:

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Cardboard:
• Distribution centered at 𝜇 = 20.
• Very narrow distribution.
• Notice truncation at zero.



The weight sensor (aka scale)
• The weight of an object can be considered as a continuous random variable.
• The Gaussian distribution would be a reasonable choice, except for the fact 

that weight can never be less than zero. Nevertheless, we’ll use the Gaussian 
distribution to model weight.
• Each object has its own Gaussian distribution:

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Paper:
• Distribution centered at 𝜇 = 5.
• Very narrow distribution.
• Notice truncation at zero.



The weight sensor (aka scale)
• The weight of an object can be considered as a continuous random variable.
• The Gaussian distribution would be a reasonable choice, except for the fact 

that weight can never be less than zero. Nevertheless, we’ll use the Gaussian 
distribution to model weight.
• Each object has its own Gaussian distribution:

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Can:
• Distribution centered at 𝜇 = 15.
• Very narrow distribution.
• Notice truncation at zero 

doesn’t really chop off much 
probability mass.



The weight sensor (aka scale)
• The weight of an object can be considered as a continuous random variable.
• The Gaussian distribution would be a reasonable choice, except for the fact 

that weight can never be less than zero. Nevertheless, we’ll use the Gaussian 
distribution to model weight.
• Each object has its own Gaussian distribution:

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Scrap Metal:
• Distribution centered at 𝜇 = 150.
• Wide distribution.
• Notice truncation at zero chops 

off significant probability mass.



The weight sensor (aka scale)
• The weight of an object can be considered as a continuous random variable.
• The Gaussian distribution would be a reasonable choice, except for the fact 

that weight can never be less than zero. Nevertheless, we’ll use the Gaussian 
distribution to model weight.
• Each object has its own Gaussian distribution:

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Bottle:
• Distribution centered at 𝜇 = 300.
• Wide distribution.
• Notice truncation at zero doesn’t 

exclude much probability mass.
• Truncation on the right is merely 

an artifact of the display. This pdf 
continues all the way to +∞.



Conditional distributions
• Instead of thinking about five individual pdfs for the different objects, 

we can think of weight as a random variable characterized by 
conditional probability distributions:

Category (C) 𝒇𝑾|𝑪(𝑾|𝑪)

Cardboard 𝑵(𝟐𝟎, 𝝈 = 𝟏𝟎)

Paper 𝑵(𝟓, 𝝈 = 𝟓)

Can 𝑵(𝟏𝟓, 𝝈 = 𝟓)

Scrap metal 𝑵(𝟏𝟓𝟎, 𝝈 = 𝟏𝟎𝟎)

Bottle 𝑵(𝟑𝟎𝟎, 𝝈 = 𝟐𝟎𝟎)

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

𝑓%|T 𝑥|𝐶 = 𝑆𝑐𝑟𝑎𝑝 𝑀𝑒𝑡𝑎𝑙 =
1
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Simulation by sampling

• We can simulate the sensor readings that will occur during operation of 
our trash sorting robot.
• The idea is a simple extension of the sampling algorithm we developed in 

Section 2.1.
1. Generate a sample category 𝑐~ 𝑃(𝐶) using the algorithm from Section 2.1.
2. Generate a sample sensor value by sampling the conditional distribution 

𝑠~𝑓3|Y 𝑥|𝐶 = 𝑐 , where 𝑓3|Y is the conditional density (or pmf) associated to the 
desired sensor.



Next Lecture:  Perception, Planning, and Learning
• Bayes Theorem

• Allows us to “invert” sensor models to obtain probabilities about the world state (and robot state).

• Maximum Likelihood Estimation
• How to use the sensor model directly to estimate the world (or robot) state
• A good choice if we have no prior knowledge about the world

• MAP Estimation
• Incorporates prior knowledge
• Provides a posterior probability distribution over world (or robot) states that takes into account

both evidence (sensors) and prior knowledge.

• Decision Theory:
• Simple risk minimization

• Learning:
• Estimating parameters of the Gaussian distribution


