
CS 3630!

Lecture 3: 
A Trash Sorting Robot:               

states and actions



Lecture 2 Recap



A Taxonomy of Robotics Topics
For each module in this class, we’ll consider six distinct aspects of robotics:

1. State: How does the robot represent its world, and itself?

2. Actions: What can the robot do, and how to represent this?

3. Sensors: What information about the world can be ascertained via sensing, 
and how do we model this process?

4. Perception: How can we combine sensor data with contextual knowledge to 
understand the current state?

5. Planning: What actions should the robot execute to transform the state of 
the world into a desired goal state?

6. Learning: How can the robot improve its knowledge over time, using 
information that it acquires during operation?

Each chapter of the book includes six sections, corresponding to these topics.



Robots in the real world

For specific applications, these topics correspond to specific problems that robots 
must solve to operate effectively.  

For example, a museum guide robot might need to solve the following problems:

• State: where is the robot, and where are the humans to be guided?

• Actions: move from room to room

• Sensors: cameras

• Perception: use computer vision to understand human intention, and to localize

• Planning: what path to take in order to guide humans to their desired exhibit

• Learning: which parts of the museum are crowded, and when to avoid these?



How do robots function in the world

When they are deployed in the world, most robots use the so-called 
Sense-Think-Act paradigm of operation.

This can be viewed as an overall control structure, in which state, 
actions, sensors, perception, planning, and learning play specific roles.
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• In most robotics applications, the 
robot does not succeed to perform 
the task using a single episode of 
sense, think, act.

• Typically, these stages are repeated 
until the task is achieved:  the sense, 
think, act loop.



Sense, Think, Act at Different Time Scales

SENSE

THINKACT

Cycle time

The time to complete one cycle of this loop 
depends on the task:
• Playing chess: minutes
• Hand-eye coordination: 30 Hz
• Force controlled robot: Order of KHz

• When cycle time is very fast, we use tools 
from control theory, and model systems 
using differential equations (continuous 
time performance).

• When cycle time is very slow, we might 
have scene understanding and 
deliberative planning.

• As computers become faster, the 
boundary between these begins to blur.



A Trash Sorting Robot

Chapter 2



A Trash Sorting Robot
Our first example is a trash sorting robot.

Individual pieces of trash arrive to the 
robot’s work cell on a conveyor belt.

The robot’s task is to place each piece of 
trash in an appropriate bin:

• Glass

• Mixed paper

• Metal

• Nop

Sensors measure various characteristics of 
the trash, which are used to make inferences 
about the object type (perception).

We assume sensor uncertainty, but perfect 
execution of actions.

Over time, sensor models can be refined 
using machine learning methods.



Modeling the 
World State

For this problem, the only interesting aspect of the 
world state is the specific material composition of 
the item of trash that is currently in the robot’s work 
cell.

We consider five possibilities:

• Cardboard

• Paper

• Cans

• Scrap Metal

• Bottles

For this chapter, we assume that there are no other 
possibilities.

You should probably just memorize these now, 
because they’re going to be used a lot in this chapter.



Modeling Uncertainty
We assume that there is uncertainty in sensing, and therefore, it is not possible to 
know with certainty the world state.

We consider the state to be a random quantity, with five possible outcomes:
Ω = {cardboard, paper, cans, scrap metal, bottle}

In probability theory, 
• The set Ω is called the sample space.
• Each 𝜔 ∈ Ω is called an outcome.
• A subset 𝐴 ⊂ Ω is called an event.

Denote by 𝔅 = 𝐴 𝐴 ⊂ Ω} the set of all events.

Probability  distributions map events to probabilities,  𝑷: 𝕭 → [𝟎, 𝟏]



Examples
Suppose the probabilities associated with the five outcomes are given as:

Category (𝝎) 𝑷({𝝎})

Cardboard 0.20

Paper 0.30

Cans 0.25

Scrap Metal 0.20

Bottle 0.05

Define three events
A1 = {cardboard, paper}
A2 = {cans, scrap metal}

Compute the following:
• The probability that an item is a paper product:  𝑷({𝑨𝟏})
• The probability that an item is a metal product:  𝑷 𝑨𝟐

Answers:
• 𝑷 𝑨𝟏 = 𝑷 𝒄𝒂𝒓𝒅𝒃𝒐𝒂𝒓𝒅 + 𝑷 𝒑𝒂𝒑𝒆𝒓 = 𝟎. 𝟓
• 𝑷 𝑨𝟐 = 𝑷 𝒄𝒂𝒏𝒔 + 𝑷 𝒔𝒄𝒓𝒂𝒑 𝒎𝒆𝒕𝒂𝒍 = 𝟎. 𝟒𝟓



Some properties of probability distributions

Three Axioms of Probability Theory:

1. For A ⊂ Ω, P(A) ≥ 0
• There’s no such thing as negative probability.

2. P(Ω) =1
• The probability that something happened is 1.

3. For Ai, Aj ⊂ Ω, if Ai ∩ Aj = ∅, then 𝑃 𝐴𝑖 ∪ 𝐴𝑗 = 𝑃 𝐴𝑖 + 𝑃 𝐴𝑗

• If two events are disjoint (aka mutually exclusive), then the probability 
that one of the two events occurred equals the sum of the probabilities for 
the two events.

• The second and third axiom immediately imply that P(∅) =0.



A handy relationship:

𝑺𝒊𝒏𝒄𝒆 𝑨 ∩ ഥ𝑨 = ∅ and 𝑨 ∪ ഥ𝑨 = 𝛀, we can conclude that 

𝑷 𝑨 + 𝑷 ഥ𝑨 = 𝟏
which implies

𝑷 ഥ𝑨 = 𝟏 − 𝑷 𝑨

Proof:
1. 𝑨 ∩ ഥ𝑨 = ∅ implies 𝐏 𝑨 ∪ ഥ𝑨 = 𝐏 𝐀 + 𝐏(𝑨) [Axiom 3]
2. 𝑨 ∪ ഥ𝑨 = 𝛀 impies 𝐏 𝑨 ∪ ഥ𝑨 = 𝑷(𝛀) = 𝟏 [Axiom 2]
3. Together, 1 and 2 imply 𝐏 𝐀 + 𝐏(𝑨) = 𝟏



Examples

Suppose the probabilities associated with the five outcomes are given as:

Category (𝝎) 𝑷({𝝎})

Cardboard 0.20

Paper 0.30

Cans 0.25

Scrap Metal 0.20

Bottle 0.05

Define two events
A1 = {cardboard, paper}
A2 = {cans, scrap metal}

Compute the following:
• The probability that an item is a paper product:  𝑷({𝑨𝟏})
• The probability that an item is a metal product:  𝑷 𝑨𝟐

• The probability that an item is not a paper product 𝑷({ഥ𝑨𝟏})

Answers:
• 𝑷 𝑨𝟏 = 𝑷 𝒄𝒂𝒓𝒅𝒃𝒐𝒂𝒓𝒅 + 𝑷 𝒑𝒂𝒑𝒆𝒓 = 𝟎. 𝟓
• 𝑷 𝑨𝟐 = 𝑷 𝒄𝒂𝒏𝒔 + 𝑷 𝒔𝒄𝒓𝒂𝒑 𝒎𝒆𝒕𝒂𝒍 = 𝟎. 𝟒𝟓
• 𝑷 ഥ𝑨𝟏 = 𝑷 𝛀 − 𝐀𝟏 = 𝐏 𝐜𝐚𝐧𝐬, 𝐬𝐜𝐫𝐚𝐩 𝐦𝐞𝐭𝐚𝐥, 𝐛𝐨𝐭𝐭𝐥𝐞 = 𝟎. 𝟓

Answers:
• 𝑷 𝑨𝟏 = 𝑷 𝒄𝒂𝒓𝒅𝒃𝒐𝒂𝒓𝒅 + 𝑷 𝒑𝒂𝒑𝒆𝒓 = 𝟎. 𝟓
• 𝑷 𝑨𝟐 = 𝑷 𝒄𝒂𝒏𝒔 + 𝑷 𝒔𝒄𝒓𝒂𝒑 𝒎𝒆𝒕𝒂𝒍 = 𝟎. 𝟒𝟓



Prior Probability Distributions
What can we say about the probabilities of various outcome before we even invoke 
the robot’s sensors? 

• Our beliefs about the probabilities of various outcomes can be encoded in a prior 
distribution --- i.e., the a priori belief about the world.

• Priors can be estimated using data, or can be inferred using domain knowledge (e.g., 
a fair coin should land on heads 50% of the time).

In the book, we estimate prior probabilities using observed data:
• Cardboard occurs about 200 times for each 1000 item of trash.
• Paper occurs about 300 times for each 1000 item of trash.
• Cans occur about 250 times for each 1000 item of trash.
• Scrap Metal occurs about 200 times for each 1000 item of trash.
• Bottles occur about 50 times for each 1000 item of trash.

Is there any reason to believe that this approach should work in practice?



Borel’s law of large numbers

• Let 𝐴 ⊂ Ω be an event with probability P 𝐴 = 𝑝.

• Suppose we run our experiment 𝑛 times, and we observe that event 𝐴
occurs 𝑁𝑛 𝐴 times.

• Then, with probability one

𝑁𝑛 𝐴

𝑛
→ 𝑝 as 𝑛 → ∞

 As the number of trials goes to infinity, the proportion of times that an 
event occurs approaches the probability of that event.

 If we make enough observations, we can start to trust that we have 
good estimates of prior probabilities!

Shamelessly taken from Wikipedia.



Machine Learning

In fact, we have just seen a first, simple example of machine learning:

1. Count the number of occurrences of each category.

2. Use their relative proportions as an estimate of the prior 
probability distribution.

We’ll go a bit deeper later in this chapter.



Simulation by sampling

• Often useful to simulate robot systems. 
In our case, we might like to simulate 
the arrival of trash to our sorting 
system, such that it accurately reflects 
the prior distribution?

• How can we generate a sequence of 
samples, say 𝜔1, 𝜔2, … , 𝜔𝑛, such that 
𝜔𝑖 = 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 for approximately 
20% of the samples, 𝜔𝑖 = 𝑝𝑎𝑝𝑒𝑟 for 
approximately 30% of the samples, etc.?

Image from here

https://developpaper.com/application-of-3d-simulation-in-smart-city-robot-arm-intelligent-garbage-classification/


Random Variables

A random variable is a mapping from outcomes to real numbers,  𝑋: Ω → ℝ.

For example, we can map our categories to integers:

• Cardboard ⟶ 0

• Paper ⟶ 1

• Can ⟶ 2

• Scrap Metal ⟶ 3

• Bottle ⟶ 4

• We typically use upper case letters, e.g., 𝑋, to denote a random variable, and lower-
case letters, e.g., 𝑥𝑖, to denote the values taken by 𝑋.

• In our example, 𝑋 ∈ 0,1,2,3,4 indicates that 𝑋 is a random variable that can take 
values from the set 0,1,2,3,4 .



Probability Mass Functions (pmf’s)
• When a random variable takes its values from a finite (or possibly countably infinite) set, it 

is called a discrete random variable.

• The probability distribution for a discrete random variable is typically defined as a 
probability mass function (pmf).

• For random variable 𝑋, the pmf is defined as

𝑝𝑋 𝑥 ≜ 𝑃(𝑋 = 𝑥)

For our example,

• 𝑝𝑋 0 = 0.20 cardboard

• 𝑝𝑋 1 = 0.30 paper

• 𝑝𝑋 2 = 0.25 can

• 𝑝𝑋 3 = 0.20 scrap metal

• 𝑝𝑋 4 = 0.05 bottle

As we will soon see, random variables can be 
very useful for outcomes that are naturally 
associated to real numbers, e.g., roll of a die, 
weight of a person, or, in our case, cost of 
applying an action.



Using pmf’s

Even for this example, where categories don’t naturally have numerical 
semantics, we can use the pmf to answer interesting questions.

For example, what is the probability that an object is a paper product?

• Paper products correspond to paper and cardboard, 𝑋 ∈ 0,1 :

𝑃 𝑋 ∈ 0,1 = 𝑝𝑋 0 + 𝑝𝑋 1 = 0.5

Alternatively, we could write:

𝑃(𝑋 ∈ 0,1 ) = 𝑃(𝑋 ≤ 1)

This form, 𝑃 𝑋 ≤ 𝛼 turns out to be very useful. 



Cumulative Distribution Function

𝐹𝑋 𝛼 = 𝑃 𝑋 ≤ 𝛼 = 

𝑥𝑖≤𝛼

𝑝𝑋(𝑥𝑖)

The Cumulative Distribution Function (CDF) is defined as

If we order the 𝑥𝑖’s, such that 𝑥0 < 𝑥2 … < 𝑥𝑛 we can write this as:

𝐹𝑋 𝛼 = 𝑃 𝑋 ≤ 𝛼 = 

𝑖=0

𝑘−1

𝑝𝑋(𝑥𝑖)

when we choose 𝑘 such that 𝑥𝑘−1 ≤ 𝛼 < 𝑥𝑘.



CDF for our trash categories

Category (𝝎) r.v. 𝒙 𝑭𝑿(𝜶)

Cardboard 0 𝑃 𝑋 ≤ 0 = 0.20, 𝜶 = 0

Paper 1 𝑃 𝑋 ≤ 1 = 0.50, 𝜶 = 1

Cans 2 𝑃 𝑋 ≤ 2 = 0.75, 𝜶 = 2

Scrap Metal 3 𝑃 𝑋 ≤ 3 = 0.90, 𝜶 = 3

Bottle 4 𝑃 𝑋 ≤ 4 = 1.00, 𝜶 = 4

𝐹𝑋 𝛼 = 𝑃 𝑋 ≤ 𝛼 = 

𝑖=0

𝑘−1

𝑝𝑋(𝑥𝑖)

It is straightforward to compute the CDF for the r.v.
associated to various trash categories:

r.v. 𝒙 𝒑𝑿(𝒙)

0 0.20

1 0.30

2 0.25

3 0.20

4 0.05



Simulation by sampling

• So, how can we generate a sequence of samples, say 𝜔1, 𝜔2, … , 𝜔𝑛, such that 𝜔𝑖 =
𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 for approximately 20% of the samples, 𝜔𝑖 = 𝑝𝑎𝑝𝑒𝑟 for approximately 30% 
of the samples, etc.?

• Sadly, most programming languages do not include library functions to sample from 
arbitrary probability distributions.

• Happily, the is almost always a random number generator that generates a random 
sample from the unit interval, 𝑥~𝑈(0,1).

• The notation 𝑥~𝑈(0,1) indicates that 𝑥 is a number chosen at random from the 
interval [0,1], and that all possible outcomes are equally likely.

Let’s see how to use this…



Simulation by sampling
Suppose we generate the samples 𝑠1 = 0.97 and 𝑠2 = 0.29

r.v. 𝒙 𝒑𝑿(𝒙) 𝑭𝑿 𝜶 ,
𝜶 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒

0 0.20 0.20

1 0.30 0.50

2 0.25 0.75

3 0.20 0.95

4 0.05 1.00

• Note that 0.95 < 𝑠_1 = 0.97 ≤ 1.
• The probability that this occurs is exactly 0.05, since the probability 

of 𝑥 ∈ 𝑎, 𝑏 = (𝑏 − 𝑎) for the uniform distribution on 0,1 .
• 𝑃(𝑏𝑜𝑡𝑡𝑙𝑒) = 0.05 …. Return category bottle.

We can generalize this to develop an algorithm that draws a sample from an arbitrary 
distribution.
1. Generate a sample 𝑥~𝑈(0,1).
2. Determine 𝑘 such that 𝐹𝑋 𝑥𝑘−1 < 𝑥 ≤ 𝐹𝑋(𝑥𝑘).
3. Select category 𝜔𝑘

• Similarly, 0.20 < 𝑠2 = 0.29 ≤ 0.50
• The probability that this occurs is exactly 0.30.
• 𝑃(𝑝𝑎𝑝𝑒𝑟) = 0.30 … Return category paper.



Use the book!
Now is the time to visit the online book, explore 
the concepts, and play with the code to ensure 
that you understand what we have just 
discussed.

• Try different prior distributions, and build the 
corresponding CDF.

• Be sure that your hand calculations match the 
results from the code.

• Generate many samples. Compare the sample 
distribution (i.e., the proportion of occurrences of 
each category) to the true prior.

• Increase the number of samples. You should 
notice that the sampling distribution becomes 
increasingly similar to the true prior as you 
increase the number of samples.



Actions

For this problem, the robot either places an item of 
trash into one of three bins, or lets the item pass 
through the work cell. 

This gives four possible actions:

• 𝑎1:  Glass Bin

• 𝑎2: Metal Bin

• 𝑎3: Paper Bin

• 𝑎4: Nop (let object pass through the workcell)

For this chapter, we assume that actions are executed 
without error, every time.

However, since we don’t know with certainty the 
category for an item of trash in the work cell, the 
efficacy of an action is also uncertain.



Assessing Risk

COST cardboard paper can scrap 
metal

bottle

glass bin 2 2 4 6 0

metal bin 1 1 0 0 2

paper bin 0 0 5 10 3

nop 1 1 1 1 1

• Because there is uncertainty in the category of a piece of trash, the robot risks making 
mistakes when choosing actions.

• Different mistakes have different costs. 
• Placing metal in the paper bin might seriously damage paper processing equipment.
• Placing paper in the metal bin is unlikely to cause much harm.

To account for these variations, 
we can define a table of costs for 
applying each action (rows) to 
each category (columns).



Assessing Risk

COST cardboard paper can scrap 
metal

bottle

glass bin 2 2 4 6 0

metal bin 1 1 0 0 2

paper bin 0 0 5 10 3

nop 1 1 1 1 1

• Because there is uncertainty in the category of a piece of trash, the robot risks making 
mistakes when choosing actions.

• Different mistakes have different costs. 
• Placing metal in the paper bin might seriously damage paper processing equipment.
• Placing paper in the metal bin is unlikely to cause much harm.

We assign zero costs to correct 
actions.



Assessing Risk

COST cardboard paper can scrap 
metal

bottle

glass bin 2 2 4 6 0

metal bin 1 1 0 0 2

paper bin 0 0 5 10 3

nop 1 1 1 1 1

• Because there is uncertainty in the category of a piece of trash, the robot risks making 
mistakes when choosing actions.

• Different mistakes have different costs. 
• Placing metal in the paper bin could cause serious damage of paper processing 

equipment.
• Placing paper in the metal bin is unlikely to cause much harm.

We assign zero costs to correct 
actions.

The cost of Nop is due to the 
need for human labor to sort the 
item of trash.



Cost as a Random Variable

Since we only have probabilistic knowledge of an item’s category, we can 
regard the cost of executing an action as a discrete random variable.

Consider action 𝑎3, place the item in the mixed paper bin. 

• Let 𝑋 be the r.v. that denotes the cost of applying action 𝑎3.

• From the table of costs, we see that 𝑋 ∈ {0,5,10,3}, since these are the 
only possible costs for this action.

What can we say about the probability distribution for 𝑋?



Computing pmf’s
To compute the pmf, recall that the random variable is a mapping from 
outcomes to real numbers.

There are five possible outcomes. The object must be from one of five 
categories, each of which has a cost.

Compute 𝑝𝑋 𝑥 for each 𝑥.

Category P(C) Cost

cardboard 0.20 0

paper 0.30 0

can 0.25 5

scrap 
metal

0.20 10

bottle 0.05 3

• 𝑋 = 0 for cardboard and paper.
• 𝑃 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟 = 𝑃 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 + 𝑃 𝑝𝑎𝑝𝑒𝑟 = 0.5
 𝑝𝑋 0 = 0.5

• 𝑋 = 5 for can.
• 𝑃 𝑐𝑎𝑛 = 0.25
 𝑝𝑋 5 = 0.25

• 𝑋 = 3 for bottle.
• 𝑃 𝑏𝑜𝑡𝑡𝑙𝑒 = 0.05
 𝑝𝑋 3 = 0.05

• 𝑋 = 10 for scrap metal.
• 𝑃 𝑠𝑐𝑟𝑎𝑝 𝑚𝑒𝑡𝑎𝑙 = 0.20
 𝑝𝑋 10 = 0.20



Expectation

• Probabilities tell us something about a single outcome, but this isn’t 
really very useful.  Gamblers who make one-time bets based on 
probabilities can lose a lot of money.

• Most robots operate for prolonged periods of time.

• The notion of average cost over many trials seems like a useful thing 
to know.

This is exactly the concept of expectation in probability theory.



Expectation

𝐸 𝑋 = 

𝑖=1

𝑛

𝑥𝑖 𝑝𝑋(𝑥𝑖)

If a r.v. 𝑋 takes its values from a finite set, 𝑋 ∈ {𝑥1, … , 𝑥𝑛}, the expected value of 𝑋, 
denoted 𝑬 𝑿 , is defined by:  

• Expectation is a property of a probability distribution
• 𝑬 𝑿 is not the value you should expect to see for any specific 

outcome!!



Examples

Let  𝑋 ∈ 𝑥1, … , 𝑥𝑛 be a discrete r.v. that corresponds to the number of 
dots shown on a fair die.

• 𝑋 ∈ 1,2,3,4,5,6 and 𝑝𝑋 𝑥𝑖 =
1

6
for all 𝑖

 Compute 𝐸 𝑋 .

𝐸 𝑋 = 

𝑖=1

𝑛

𝑥𝑖 𝑝𝑋 𝑥𝑖 = 

𝑖=1

6
1

6
𝑖 =

1

6
+

2

6
+

3

6
+

4

6
+

5

6
+

6

6
=

21

6
= 3.5



Trash Sorting…

We can now easily evaluate the expected cost for each action under 
the prior probability distribution.

Expected
Cost

3.2

0.6

3.4

1.0

COST Card
board

paper can scrap 
metal

bottle

glass 
bin

2 2 4 6 0

metal 
bin

1 1 0 0 2

paper 
bin

0 0 5 10 3

nop 1 1 1 1 1

𝑷(𝝎) 0.20 0.30 0.25 0.20 0.05

2 × 0.5 + 4 × 0.25 + 6 × 0.2 = 3.2

1 × 0.5 + 2 × 0.05 = 0.6

5 × 0.25 + 10 × 0.2 + 3 × 0.05 = 3.4

1 × 0.5 + 1 × 0.25 + 1 × 0.2 + 1 × 0.05 = 1.0



Simulation by sampling

Earlier, we simulated our trash sorting system using a sampling 
algorithm.  Let’s apply those ideas here.

1. Generate 𝑁 samples from the prior distribution on categories.

2. Compute the cost 𝑐𝑖 for each sample for action 𝑎𝑘.

3. Compute the average cost as:

𝑐𝑜𝑠𝑡𝑘 =
1

𝑁


𝑖=1

𝑁

𝑐𝑖

4. Compare 𝑐𝑜𝑠𝑡𝑘 to 𝐸 𝑋 for action 𝑎𝑘 (where 𝑋 is the r.v. for cost).



Probability vs Statistics
• Probability theory is the study of a certain class of mathematical 

functions (probability distributions).

• A statistic is any function of data (including the identity function), and 
statistics is the study of such functions.

𝐸 𝑋 = 

𝑖=1

𝑛

𝑥𝑖 𝑝𝑋(𝑥𝑖) 𝑐𝑜𝑠𝑡𝑘 =
1

𝑁


𝑖=1

𝑁

𝑐𝑖

𝐸 𝑋 is a property of 𝑝𝑋 𝑥𝑖

Probability Theory
𝑐𝑜𝑠𝑡𝑘 is a function of data, 𝑐𝑖

 Statistics



Probability Theory and Statistics
If it happens that certain probability distributions do a good job of describing how 
the world behaves, then probability theory can provide a rigorous basis for a 
system of inference about data.

The Weak Law of Large Numbers:
Consider a data set drawn from probability distribution 𝑝𝑋, with expected value 𝐸 𝑋 = 𝜇.
For any 𝜖 > 0, if ҧ𝑥𝑁 denotes the average of a data set of size 𝑁 , then

lim
𝑛→∞

𝑃 ҧ𝑥𝑁 − 𝜇 < 𝜖 = 1

As the size of the data set increases, with probability one the average is arbitrarily close to 
the mean.



Probability Theory and Statistics

The connections between probability theory and statistics are often 
formalized by theorems that express variations on a simple concept:

As the size of a data set becomes large, the statistics of that data set 
will become increasingly good approximations for various properties of 
the underlying probability distribution from which the data set was 
generated.

• This is one of the reasons simulation by sampling works.

• These theorems are important for statistical inference, machine learning, 
and many other problems that involve data drawn from stochastic 
systems.



Next Lecture: Sensing and Perception

• Conditional probability:
• How do sensor observations affect our beliefs about the world? 

• A key tool for data-based inference

• Continuous random variables:
• Unlike our five categories of trash,  some things are best described along a 

continuum.

• Things like weight, distance are described using continuous measurements.

• Gaussian Distributions

• Maximum likelihood inference
• Making decisions using conditional probabilities

• Combining information from multiple sensors


