
CS 3630!

Lecture 27:
RRTs and Trajectory
Optimization

RRT Recap

Configuration Space
• A configuration is a complete specification of the position of every point in a robot system.

• The configuration space is the set of all configurations.

• We use 𝑞 to denote a point in a configuration space 𝒬.

𝒙
𝒚

𝑶 = 𝒙, 𝒚

𝜃

𝒚𝒘𝒐𝒓𝒍𝒅

𝒙𝒘𝒐𝒓𝒍𝒅

Because our DDR can rotate in the plane, it is
necessary to know both the position and the
orientation of the body-attached frame to specify a
configuration:

𝒬 = ℝ!× 0,2𝜋

𝑞 = 𝑥, 𝑦, 𝜃 ∈ 𝒬

If we know the configuration, 𝑞 = 𝑥, 𝑦, 𝜃 , we can
compute the location of any point on the robot.

Rapidly-Exploring	Random	Tree	(RRT)
• Searches	for	a	path	from	the	initial	
configuration	to	the	goal	configuration	
by	expanding	a	search	tree	

• For	each	step,	
• The	algorithm	samples	a	target	
configuration	and	expands	the	tree	
towards	it.	

• The	sample	can	either	be	a	random	
configuration	or	the	goal	
configuration	itself,	depends	on	the	
probability	value	defined	by	the	
user.	

The	Basic	Idea:	Iteratively	expand	the	tree

• Denote	by	𝑇. the	tree	at	iteration	𝑘

• Randomly	choose	a	configuration	𝑞/012

• Choose	𝑞130/ = arg min
4∈5!

𝑑(𝑞, 𝑞/012)
Ø𝑞#$%& is	the	nearest	existing	node	in	the	tree	to	𝑞&%#'

• Create	a	new	node,	𝑞136 by	taking	a	small	step	from	𝑞130/ toward	𝑞/012

Why are RRT’s rapidly exploring?

The	probability	of	a	node	being	selected	for	expansion	(i.e. being	a	
nearest	neighbor	to	a	new	randomly	picked	point)	is	proportional	to	
the	area	of	its	Voronoi region.

RRT

• Requires the following functions:

• p = RandomSample()

• Uniform random sampling of free configuration
space

• v = Nearest(p)

• Given point in Cspace, find vertex on tree that is
closest to that point

• p’ = Steer(p, goal)

• For a point p and a goal point, find p’ that is
closer to the goal than p

• ObstacleFree(p)

• Check if a given Cspace point is in the free space

RRT

RRT

RRT

RRT

RRT

RRT - Bias to Goal

RRT for Drones

Mardi Gras 2017 finals

https://www.youtube.com/watch?v=dDTqHYbpCVw

RRT for Drones
in Project 6
• RandomSample()

• Generate a point in 3D

• Nearest(p)

• Find closest point on the evolving 3D
tree

• p’ = Steer(p, goal)

• Steer the drone toward the target
node

• ObstacleFree(p)

• No obstacles at first

Adding Drone
Dynamics
• RandomSample()

• Generate a random pose

• ENU nav frame, FLU body frame

• Nearest(p)

• Find nearest pose on the tree

• p’ = Steer(p, goal)

• fly the drone for a small duration in the
direction of the target at the terminal
velocity with maximum thrust of 20N.

• ObstacleFree(p)

• No obstacles at first

More realism
• Before we assumed we can apply thrust in any

direction we want

• Realism 1: add effect of gravity!
• Drone no longer flies where we want!

• Realism 2: no instantaneous attitude changes!
• Allow only 10 degree changes in yaw, pitch, roll
• Allow choosing thrust values

• New Steer function:
• Check all 108 different combinations
• Return result that gets us closest to the target!

Putting it all
together:

drone
racing!

Trajectory
Optimization

Factor graphs model both perception and action,
from SLAM and 3D mapping to optimal control

Localization Pose SLAM

Landmarks-based SLAM Optimal Control

Pseudospectral Optimal Control
• Save NASA $1M !

Pseudospectral Optimal Control
• Save NASA $1M !

Motion Planning is one of the key capabilities for autonomous systems

Factor graphs turn out to be an excellent framework in which to
innovate in motion planning [Mukadam et al. IJRR ’18]

- Factors for:
• Trajectory prior factors
• Overall task-related objective
• Obstacle avoidance, joint limits, etc…

-Fast incremental replanning using GTSAM

Gaussian-Process Motion Planning (GPMP) formulates motion
planning as Probabilistic Inference in a space of smooth trajectories

Trajectory Prior Collision-free Likelihood

With Jing Dong, Mustafa Mukadam,& Byron
Boots

Robotics: Science and Systems, 2016

start goal

Trajectory as Gaussian Process (GP)

- Trajectory is interpolated
- Represented by a few states

start goal
Mean

Covariance

start goal

GPMP2 uses factor graphs and sparsity to
provide an efficient least-square MP solution

start

goal

State
Factor

iGPMP2 uses the Bayes tree to efficiently re-plan,
exploiting tricks we learned in incremental SLAM2

[2] Kaess et al. iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree, The
International Journal of Robotics Research (2011)

start

goal

new goal

State
Factor

Results

Planning Experiments

Re-planning Experiments

We used factor-graph-based motion planning to perform robot calligraphy
[Wang et al. IROS ’20]

We used factors to encode robot dynamics and applied to
kino-dynamic motion planning [Xie+'20]

- Recipe:
•Take modern dynamics formulation
•Turn into factor graph
•Optimize with sparse (incremental)
solvers

This example shows how kino-dynamics motion planning
respects torque limits for weight-lifting

A sophisticated applications involves a jumping robot with
pneumatic muscles, using kino-dynamic planning [IROS’21].

