CS 3630!

Lecture 27:
RRTs and Trajectory
Optimization

RRT Recap

Configuration Space

* A configuration is a complete specification of the position of every point in a robot system.

* The configuration space is the set of all configurations.

* We use g to denote a point in a configuration space Q.

Because our DDR can rotate in the plane, it is
necessary to know both the position and the
orientation of the body-attached frame to specify a

configuration:
Q = R?x[0,21)

q=(xy0)€EQ

0 = (x, y) Xworld

If we know the configuration, g = (x,y,0), we can

|yworld y compute the location of any point on the robot.

Rapidly-Exploring Random Tree (RRT)

* Searches for a path from the initial
configuration to the goal configuration
by expanding a search tree

* For each step,

* The algorithm samples a target
configuration and expands the tree
towards it.

* The sample can either be a random
configuration or the goal
configuration itself, depends on the
probability value defined by the
user.

The Basic Idea: Iteratively expand the tree

* Denote by T, the tree at iteration k

* Randomly choose a configuration g, ;4

* Choose queqr = arg rrel%,rllc d(q, Qrana)

» qneaqr 1S the nearest existing node in the tree to g, 414

* Create a new node, g,,,,, by taking a small step from q,,.,, toward g, ;.4

Why are RRT’s rapidly exploring?

The probability of a node being selected for expansion (i.e. being a
nearest neighbor to a new randomly picked point) is proportional to
the area of its Voronoi region.

* Requires the following functions:
 p = RandomSample()

* Uniform random sampling of free configuration
space

v = Nearest(p)

* Given point in Cspace, find vertex on tree that is
closest to that point

p’ = Steer(p, goal)

* For a point p and a goal point, find p’ that is
closer to the goal than p

ObstacleFree(p)

Check if a given Cspace point is in the free space

RRT

Ve A{zinir}; E 0
for2=1to N
G « (V,E)
Zrand < RandomSample()
Tnearest — Nearest(G, Trond)
Tnew < Steer(Tnearest, Trand)
if ObstacleF'ree(Tnearest, Tnew)

V «— VU {Znew}
E+ FEU {(xnearest,xnew)}

10

I
10

RRT

Ve A{zinir}; E 0
for2=1to N
G « (V,E)
Trand < RandomSample()
Tnearest < Nearest(G, Trand)
Tnew < Steer(Tnearest, Trand)
if ObstacleF'ree(Tnearest, Tnew)

V «— VU{Zpew}
E+ FEU {(xnearest,xnew)}

10

I
10

RRT

Ve A{zinir}; E 0
forz=1to N
G « (V,E)
Trand < RandomSample()
Tnearest — Nearest(G, Trond)
Tnew < Steer(Tnearest, Trand)
if ObstacleF'ree(Tnearest, Tnew)

V «— VU{Zpew}
EF+ FEU {(xnearestaxnew)}

10

I
10

RRT

Ve A{zinir}; E 0
for2=1to N
G « (V,E)
Trand < RandomSample()
Tnearest — Nearest(G, Trond)
Tnew < Steer(Tnearest, Trand)
if ObstacleF'ree(Tnearest, Tnew)

Ve VU{Znew}
EFE+ FU {(xnearesta mnew)}

10

I
10

RRT

Ve A{Zinit}; E 0
fori=1to N
G« (V,E)
Trand < RandomSample()
Tnearest — Nearest(G, Trand)
Tnew < Steer(Tnearest, Trand)
if ObstacleFree(Tnearest; Tnew)

V«VuU {xnew}
F+ FU {(xnearesta xnew)}

10

I
10

RRT - Bias to Goal

with probability p
Zrand ¢ RandomSample()

otherwise

Trand < Tgoal

Mardi Gras 2017 finals

https://www.youtube.com/watch?v=dDTqHYbpCVw

RRT for Drones
In Project 6

RandomSample()
* Generate a pointin 3D
Nearest(p)

* Find closest point on the evolving 3D
tree

p’ = Steer(p, goal)

* Steer the drone toward the target
node

ObstacleFree(p)

No obstacles at first

Adding Drone
Dynamics

RandomSample()
Generate a random
ENU nav frame, FLU body frame
Nearest(p)
Find nearest on the tree
p’ = Steer(p, goal)

fly the drone for a small duration in the
direction of the target at the terminal
velocity with maximum thrust of 20N.

ObstacleFree(p)

No obstacles at first

More realism

* Before we assumed we can apply thrust in any
direction we want

e Realism 1: add effect of gravity!
* Drone no longer flies where we want!

e Realism 2: no instantaneous attitude changes!
* Allow only 10 degree changes in yaw, pitch, roll
* Allow choosing thrust values
* New Steer function:
* Check all 108 different combinations
e Return result that gets us closest to the target!

Putting it all
together:

drone
racing!

Trajectory
Optimization

p(x1)

-

Factor graphs model both and
from SLAM and 3D mapping to optimal Control

Gor(T1,)

T
p(x3]x2) 5 *
° ? * ? ¢p(T1) ¢u(Ts, T2) ¢ (Ta, Ts)
[(x1; 1) :T1 . @ .
Localization Pose SLAM

é Ju(uq) %;

T Jx(x1) P(x3 |2, uz)

° \2/
Landmarks-based SLAM Optimal Control

T3

Pseudospectral Optimal Control
e Save NASA S1M !

3-Mar-2007 16:42:45 Dox. 62
12K:1 AB: 8TS-116 b cparted
LviH/ Plus 3 /l
External

Sunset 26:851

Pseudospectral Optimal Control
e Save NASA S1M !

N

-10
20

_20 1

-60
-100
-140
-180

Attitude [deg]

""""""""""""""

..

""""""""""""""""""""""""""""""

m— Optimal

=== Figenaxis

16:39 17:09 17:39 18:09

Time [HH:MM]

18:39 19:0919:26

Motion Planning is one of the key capabilities for autonomous systems

Factor graphs turn out to be an excellent framework in which to
innovate in motion planning [Mukadam et al. [JRR '18]

- Factors for:
e rajectory prior factors
» Overall task-related objective
» Obstacle avoidance, joint imits, etc...

- Fast incremental replanning using GTSAM

Gaussian-Process Motion Planning (GPMP) formulates motion
planning as Probabilistic Inference in a space of smooth trajectories

Trajectory Prior Collision-free Likelihood

0" = argmax{\ H P{zw }

start goal

Trajectory as Gaussian Process (GP)

0(t) ~ GP(u(t), K(t,1))

Covariance

- Irajectory Is interpolated
- Represented by a few states

GPMP?2 uses factor graphs and sparsity to
provide an efficient least-square MP solution

goal

start
\'
T
", % .
| .\ .'h
by "
by "

Q State

B Factor

Y ""s
-)
Y
| Y
o
e

IGPMP2 uses the Bayes tree to efficiently re-plan,
exploiting tricks we learned in incremental SLAM?

- %

start “hew goal

goal

O State

B Factor

[2] Kaess et al. iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree, The
International Journal of Robotics Research (2011)

Re-planning Experiments

Results

Average Time of Success (ms)

TrajOpt

GPMP

CHOMP

0 500 1000 1500

Time (ms)

Average Time to Success (ms)

Time (ms)

B \WAM
dataset
(24)
B PR2
dataset
(90)
2000

 WAM

dataset
(32)

B PR2

dataset
(28)

40

We used factor-graph-based motion planning to perform robot calligraphy
[Wang et al. IROS "20]

We used factors to encode robot dynamics and applied to
kino-dynamic motion planning [Xie+'20]

- Recipe:
 [ake modern dynamics formulation
* [Un Into factor graph

» Optimize with sparse (incremental)
solvers

This example shows how kino-dynamics motion planning
respects torque limits for weight-lifting

Scene hierarchy X]|
(@ new scene (scene 2) = Ly
DefaultCamera

& Revolute_joint A

& Revolute_jointd A
@o- @ ResizableFloor_5_25

& iz
L)
&

LBR_iiwa_7.

A sophisticated applications involves a jumping robot with
pneumatic muscles, using kino-dynamic planning [I[ROS’21].

Factor Graph-Based Trajectory Optimization for a
Pneumatically-Actuated Jumping Robot

Georgia Institute of Technology

Lucas Tiziani, Yetong Zhang, Frank Dellaert, and Frank L. Hammond Il

o Geqrala ARM

