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Lecture 27: 
RRTs and Trajectory 
Optimization



RRT Recap



Configuration Space
• A configuration is a complete specification of the position of every point in a robot system.

• The configuration space is the set of all configurations.

• We use 𝑞 to denote a point in a configuration space 𝒬.
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Because our DDR can rotate in the plane, it is 
necessary to know both the position and the 
orientation of the body-attached frame to specify a 
configuration:

𝒬 = ℝ!× 0,2𝜋

𝑞 = 𝑥, 𝑦, 𝜃 ∈ 𝒬

If we know the configuration, 𝑞 = 𝑥, 𝑦, 𝜃 , we can 
compute the location of any point on the robot.



Rapidly-Exploring	Random	Tree	(RRT)
• Searches	for	a	path	from	the	initial	
configuration	to	the	goal	configuration	
by	expanding	a	search	tree	

• For	each	step,	
• The	algorithm	samples	a	target	
configuration	and	expands	the	tree	
towards	it.	

• The	sample	can	either	be	a	random	
configuration	or	the	goal	
configuration	itself,	depends	on	the	
probability	value	defined	by	the	
user.	



The	Basic	Idea:	Iteratively	expand	the	tree

• Denote	by	𝑇. the	tree	at	iteration	𝑘

• Randomly	choose	a	configuration	𝑞/012

• Choose	𝑞130/ = arg min
4∈5!

𝑑(𝑞, 𝑞/012)
Ø𝑞#$%& is	the	nearest	existing	node	in	the	tree	to	𝑞&%#'

• Create	a	new	node,	𝑞136 by	taking	a	small	step	from	𝑞130/ toward	𝑞/012



Why are RRT’s rapidly exploring? 

The	probability	of	a	node	being	selected	for	expansion	(i.e. being	a	
nearest	neighbor	to	a	new	randomly	picked	point)	is	proportional	to	
the	area	of	its	Voronoi region.



RRT

• Requires the following functions:

• p = RandomSample() 

• Uniform random sampling of free configuration 
space

• v = Nearest(p)  

• Given point in Cspace, find vertex on tree that is 
closest to that point

• p’ = Steer(p, goal) 

• For a point p and a goal point, find p’ that is 
closer to the goal than p

• ObstacleFree(p) 

• Check if a given Cspace point is in the free space
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RRT - Bias to Goal



RRT for Drones



Mardi Gras 2017 finals

https://www.youtube.com/watch?v=dDTqHYbpCVw


RRT for Drones 
in Project 6
• RandomSample() 

• Generate a point in 3D

• Nearest(p)  

• Find closest point on the evolving 3D 
tree

• p’ = Steer(p, goal) 

• Steer the drone toward the target 
node

• ObstacleFree(p) 

• No obstacles at first



Adding Drone 
Dynamics
• RandomSample() 

• Generate a random pose

• ENU nav frame, FLU body frame

• Nearest(p)  

• Find nearest pose on the tree

• p’ = Steer(p, goal) 

• fly the drone for a small duration in the 
direction of the target at the terminal 
velocity with maximum thrust of 20N.

• ObstacleFree(p) 

• No obstacles at first



More realism
• Before we assumed we can apply thrust in any 

direction we want

• Realism 1: add effect of gravity!
• Drone no longer flies where we want!

• Realism 2: no instantaneous attitude changes!
• Allow only 10 degree changes in yaw, pitch, roll
• Allow choosing thrust values

• New Steer function:
• Check all 108 different combinations
• Return result that gets us closest to the target!



Putting it all 
together: 

drone 
racing!



Trajectory 
Optimization



Factor graphs model both perception and action, 
from SLAM and 3D mapping to optimal control

Localization Pose SLAM

Landmarks-based SLAM Optimal Control



Pseudospectral Optimal Control
• Save NASA $1M !



Pseudospectral Optimal Control
• Save NASA $1M !



Motion Planning is one of the key capabilities for autonomous systems 



Factor graphs turn out to be an excellent framework in which to 
innovate in motion planning [Mukadam et al. IJRR ’18]

- Factors for:
• Trajectory prior factors
• Overall task-related objective
• Obstacle avoidance, joint limits, etc…

-Fast incremental replanning using GTSAM



Gaussian-Process Motion Planning (GPMP) formulates motion 
planning as Probabilistic Inference in a space of smooth trajectories

Trajectory Prior Collision-free Likelihood

With Jing Dong, Mustafa Mukadam,& Byron 
Boots

Robotics: Science and Systems, 2016

start goal



Trajectory as Gaussian Process (GP)

- Trajectory is interpolated 
- Represented by a few states 

start goal
Mean

Covariance

start goal



GPMP2 uses factor graphs and sparsity to 
provide an efficient least-square MP solution

start

goal

State
Factor



iGPMP2 uses the Bayes tree to efficiently re-plan, 
exploiting tricks we learned in incremental SLAM2

[2] Kaess et al. iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree, The 
International Journal of Robotics Research (2011)
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Results

Planning Experiments

Re-planning Experiments



We used factor-graph-based motion planning to perform robot calligraphy 
[Wang et al. IROS ’20]



We used factors to encode robot dynamics and applied to 
kino-dynamic motion planning [Xie+'20]

- Recipe:
•Take modern dynamics formulation
•Turn into factor graph
•Optimize with sparse (incremental) 
solvers



This example shows how kino-dynamics motion planning 
respects torque limits for weight-lifting



A sophisticated applications involves a jumping robot with 
pneumatic muscles, using kino-dynamic planning [IROS’21].


