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Pose in 3D



Reference Frames

• Robotics is all about management 
of reference frames
• Perception is about estimation of 

reference frames
• Planning is how to move reference 

frames
• Control is the implementation of 

trajectories for reference frames

• The relation between references 
frames is essential to a successful 
system



Application to Drones
To characterize the position and orientation of a 
drone in flight, 
• attach a coordinate frame to the drone (rigid 

attachment)
• specify the position and orientation of the 

frame.



First… a quick review

Nearly everything we learned about position and orientation in the 
plane can be easily generalized to position and orientation in 3D.

We’ll start with a quick review of the 2D case, then generalize to 3D, 
and show the corresponding mathematical formulations.



Specifying Orientation in the Plane

𝜽

𝜽

𝑥!

𝑦!

𝑥"

𝑦"

sin 𝜃

cos 𝜃

Given two coordinate frames with a common origin, how should we describe the 
orientation of Frame 1 w.r.t. Frame 0?

Ø Specify the directions of 𝑥! and 𝑦! with respect to Frame 0 by projecting 
onto 𝑥" and 𝑦". 

Notation:  𝑥!" denotes 
the x-axis of Frame 1, 
specified w.r.t Frame 0. 

𝑦"# =
𝑦" ⋅ 𝑥#
𝑦" ⋅ 𝑦# = −sin 𝜃

cos 𝜃
We obtain 𝑦!" in the 
same way. 

𝑥"# =
𝑥" ⋅ 𝑥#
𝑥" ⋅ 𝑦# = cos 𝜃

sin 𝜃



Rotation Matrices (rotation in the plane)
We combine these two vectors to obtain a rotation matrix: 𝑅"! =

cos 𝜃
sin 𝜃

−sin 𝜃
cos 𝜃

All rotation matrices have certain properties:
1. The two columns are each unit vectors.
2. The two columns are orthogonal, e.g., 𝑐" ⋅ 𝑐) = 0.
3. det 𝑅 = +1

ØThe first two properties imply that the matrix 𝑅 is orthogonal.
ØThe third property implies that the matrix is special! (After all, there are plenty of 

orthogonal matrices whose determinant is -1, not at all special.)

The collection of 2×2 rotation matrices is called the Special Orthogonal Group of order 2, 
or, more commonly 𝑺𝑶(𝟐).

This concept generalizes to 𝑺𝑶 𝒏 for 𝑛×𝑛 rotation matrices.  

For such matrices 𝑹*𝟏= 𝑹𝑻



Rotation Matrices (3D)
All of the properties of SO(2) apply as well to SO(3)!

All rotation matrices have certain properties:
1. The two columns are each unit vectors.
2. The two columns are orthogonal, e.g., 𝑐" ⋅ 𝑐) = 0.
3. det 𝑅 = +1

ØThe first two properties imply that the matrix 𝑅 is orthogonal.
ØThe third property implies that the matrix is special! (After all, there are plenty of 

orthogonal matrices whose determinant is -1, not at all special.)

The collection of 3×3 rotation matrices is called the Special Orthogonal Group of order 3, 
or, more commonly 𝑺𝑶(𝟑).

For such matrices 𝑹*𝟏= 𝑹𝑻



Rotation Matrices for 3D rotations

𝑅"# = 𝑥" ⋅ 𝐹# 𝑦" ⋅ 𝐹# 𝑧" ⋅ 𝐹# =
𝑥" ⋅ 𝑥# 𝑦" ⋅ 𝑥# 𝑧" ⋅ 𝑥#
𝑥" ⋅ 𝑦# 𝑦" ⋅ 𝑦# 𝑧" ⋅ 𝑦#
𝑥" ⋅ 𝑧# 𝑦" ⋅ 𝑧# 𝑧" ⋅ 𝑧#

To build a rotation matrix, say 𝑅!": project the axes of Frame 1 onto Frame 0. Each column 
of 𝑅!" corresponds to the projection of one axis of Frame 1 onto Frame 0. 



𝑅"# = 𝑥" ⋅ 𝐹# 𝑦" ⋅ 𝐹# 𝑧" ⋅ 𝐹# =
𝑥" ⋅ 𝑥# 𝑦" ⋅ 𝑥# 𝑧" ⋅ 𝑥#
𝑥" ⋅ 𝑦# 𝑦" ⋅ 𝑦# 𝑧" ⋅ 𝑦#
𝑥" ⋅ 𝑧# 𝑦" ⋅ 𝑧# 𝑧" ⋅ 𝑧#

Rotation Matrices for 3D rotations

Project the x-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅!": project the axes of Frame 1 onto Frame 0. Each column 
of 𝑅!" corresponds to the projection of one axis of Frame 1 onto Frame 0. 



Rotation Matrices for 3D rotations

𝑅"# = 𝑥" ⋅ 𝐹# 𝑦" ⋅ 𝐹# 𝑧" ⋅ 𝐹# =
𝑥" ⋅ 𝑥# 𝑦" ⋅ 𝑥# 𝑧" ⋅ 𝑥#
𝑥" ⋅ 𝑦# 𝑦" ⋅ 𝑦# 𝑧" ⋅ 𝑦#
𝑥" ⋅ 𝑧# 𝑦" ⋅ 𝑧# 𝑧" ⋅ 𝑧#

Project the y-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅!": project the axes of Frame 1 onto Frame 0. Each column 
of 𝑅!" corresponds to the projection of one axis of Frame 1 onto Frame 0. 



Rotation Matrices for 3D rotations

𝑅"# = 𝑥" ⋅ 𝐹# 𝑦" ⋅ 𝐹# 𝑧" ⋅ 𝐹# =
𝑥" ⋅ 𝑥# 𝑦" ⋅ 𝑥# 𝑧" ⋅ 𝑥#
𝑥" ⋅ 𝑦# 𝑦" ⋅ 𝑦# 𝑧" ⋅ 𝑦#
𝑥" ⋅ 𝑧# 𝑦" ⋅ 𝑧# 𝑧" ⋅ 𝑧#

Project the z-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅!": project the axes of Frame 1 onto Frame 0. Each column 
of 𝑅!" corresponds to the projection of one axis of Frame 1 onto Frame 0. 



Rotation Matrices for 3D rotations

𝑅"# = 𝑥" ⋅ 𝐹# 𝑦" ⋅ 𝐹# 𝑧" ⋅ 𝐹# =
𝑥" ⋅ 𝑥# 𝑦" ⋅ 𝑥# 𝑧" ⋅ 𝑥#
𝑥" ⋅ 𝑦# 𝑦" ⋅ 𝑦# 𝑧" ⋅ 𝑦#
𝑥" ⋅ 𝑧# 𝑦" ⋅ 𝑧# 𝑧" ⋅ 𝑧#

Project the x-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅!": project the axes of Frame 1 onto Frame 0. Each column 
of 𝑅!" corresponds to the projection of one axis of Frame 1 onto Frame 0. 

Project the y-axis of Frame 1 
onto the axes of Frame 0

Project the z-axis of Frame 1 
onto the axes of Frame 0

This process is exactly the same as the process for building rotation matrices in SO(2), 
even though it can be more difficult to visualize in 3D for rotation matrices in SO(3).



The simplest example: rotation about the z axis

𝜽

𝜽

𝑥!

𝑦!

𝑥"

𝑦"

𝑧!𝑧"

Recall: for rotation in the plane, we built a rotation matrix as a function 
of 𝜃, the angle between 𝑥! and 𝑥" (and also between 𝑦! and 𝑦"):

Ø 𝑅!" =
cos 𝜃
sin 𝜃

−sin 𝜃
cos 𝜃 FOR ROTATION IN THE PLANE

This is easily extended to the case of rotation in 3D about the 
z-axis, since all of the interesting action is in the x-y plane (the 
two z-axes are the same)!

In fact, you’ll see that the 2D rotation matrix shows up in the 
3D rotation matrix:

Ø 𝑅!" =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

FOR ROTATION IN 3D

Projecting 𝑧! onto Frame 0 involves three 
dot products:

𝑧! ⋅ 𝑥" = 0
𝑧! ⋅ 𝑦" = 0
𝑧! ⋅ 𝑧" = 1



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅#$ =
𝑥# ⋅ 𝑥$ 𝑦# ⋅ 𝑥$ 𝑧# ⋅ 𝑥$
𝑥# ⋅ 𝑦$ 𝑦# ⋅ 𝑦$ 𝑧# ⋅ 𝑦$
𝑥# ⋅ 𝑧$ 𝑦# ⋅ 𝑧$ 𝑧# ⋅ 𝑧$

𝑅!" =
−1 0 0
0 0 1
0 1 0

𝑅"! =
−1 0 0
0 0 1
0 1 0



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅#$ =
𝑥# ⋅ 𝑥$ 𝑦# ⋅ 𝑥$ 𝑧# ⋅ 𝑥$
𝑥# ⋅ 𝑦$ 𝑦# ⋅ 𝑦$ 𝑧# ⋅ 𝑦$
𝑥# ⋅ 𝑧$ 𝑦# ⋅ 𝑧$ 𝑧# ⋅ 𝑧$

𝑅"! =
−1 0 0
0 0 1
0 1 0

𝑅!" =
−1 0 0
0 0 1
0 1 0

𝑅"!𝑅!"= 
−1 0 0
0 0 1
0 1 0

−1 0 0
0 0 1
0 1 0

=
1 0 0
0 1 0
0 0 1

𝑅"# )" = 𝑅#" = 𝑅"# *



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅#$ =
𝑥# ⋅ 𝑥$ 𝑦# ⋅ 𝑥$ 𝑧# ⋅ 𝑥$
𝑥# ⋅ 𝑦$ 𝑦# ⋅ 𝑦$ 𝑧# ⋅ 𝑦$
𝑥# ⋅ 𝑧$ 𝑦# ⋅ 𝑧$ 𝑧# ⋅ 𝑧$

𝑅+# =
1 0 0
0 −1 0
0 0 −1

𝑅+" =
−1
0
0

0
0
−1

0
−1
0



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅#$ =
𝑥# ⋅ 𝑥$ 𝑦# ⋅ 𝑥$ 𝑧# ⋅ 𝑥$
𝑥# ⋅ 𝑦$ 𝑦# ⋅ 𝑦$ 𝑧# ⋅ 𝑦$
𝑥# ⋅ 𝑧$ 𝑦# ⋅ 𝑧$ 𝑧# ⋅ 𝑧$

𝑅,# =
0
−1
0

−1
0
0

0
0
−1



Let’s extend this to 3D rotational coordinate 
transformations.



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃" =
𝑝:
𝑝; .

𝑝% 𝑝&

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝:𝑥" + 𝑝;𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥" and 𝑦" axes:



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃" =
𝑝:
𝑝; .

𝑝% 𝑝&

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝:𝑥" + 𝑝;𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥" and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

=
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")

=
𝑥! ⋅ 𝑥" 𝑦! ⋅ 𝑥"
𝑥! ⋅ 𝑦" 𝑦! ⋅ 𝑦"

𝑝#
𝑝$ = 𝟎𝑹𝟏 𝟏𝑷



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by "𝑃 =
𝑝:
𝑝; .

𝑝% 𝑝&

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝:𝑥" + 𝑝;𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥" and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

=
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")

=
𝑥! ⋅ 𝑥" 𝑦! ⋅ 𝑥"
𝑥! ⋅ 𝑦" 𝑦! ⋅ 𝑦"

𝑝#
𝑝$ = 𝟎𝑹𝟏 𝟏𝑷



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by "𝑃 =
𝑝:
𝑝; .

𝑝% 𝑝&

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝:𝑥" + 𝑝;𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥" and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

=
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")

=
𝑥! ⋅ 𝑥" 𝑦! ⋅ 𝑥"
𝑥! ⋅ 𝑦" 𝑦! ⋅ 𝑦"

𝑝#
𝑝$ = 𝟎𝑹𝟏 𝟏𝑷



To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥" and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

=
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")

=
𝑥! ⋅ 𝑥" 𝑦! ⋅ 𝑥"
𝑥! ⋅ 𝑦" 𝑦! ⋅ 𝑦"

𝑝#
𝑝$ = 𝑹𝟏𝟎 𝑷𝟏

Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by "𝑃 =
𝑝:
𝑝; .

𝑝% 𝑝&

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝:𝑥" + 𝑝;𝑦"



𝑥"

𝑦"

Coordinate Transformations (rotation only)

𝑥!

𝑦!

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃" =
𝑝:
𝑝; .

𝑝% 𝑝&

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝:𝑥" + 𝑝;𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥" and 𝑦" axes:

𝑝" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

=
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")

=
𝑥! ⋅ 𝑥" 𝑦! ⋅ 𝑥"
𝑥! ⋅ 𝑦" 𝑦! ⋅ 𝑦"

𝑝#
𝑝$ = 𝑹𝟏𝟎 𝑷𝟏

𝑷𝟎 = 𝑹𝟏𝟎 𝑷𝟏



The simplest example: rotation about the z axis

𝜽

𝜽

𝑥!

𝑦!

𝑥"

𝑦"

𝑧!𝑧"
As we saw above:

𝑅!" =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

The equation for rotational coordinate transformations 
generalizes immediately to the 3D case!

𝑷𝟎 = 𝑹𝟏𝟎 𝑷𝟏 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

𝑝'
𝑝(
0

𝑝%

𝑝&

𝑃



Composition of Rotations

𝑥!

𝑦"

𝑦)

𝑦!
𝑥"

𝑥)

𝑃

𝑃" = 𝑅)"𝑃)
𝑃! = 𝑅"!𝑃"

From our previous results, we know:

𝑃! = 𝑅"!𝑅)"𝑃)

𝑃! = 𝑅)!𝑃)
𝑅)! = 𝑅"!𝑅)"

But we also know:

𝑅!"
𝑅#!

𝑅#"

This is the composition law for 
rotation transformations.

For now, only consider the rotation, not the translation!
This is an “exploded” view of three coordinate frames 
that share the same origin.

𝑧!

𝑧"

𝑧)



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅#$ =
𝑥# ⋅ 𝑥$ 𝑦# ⋅ 𝑥$ 𝑧# ⋅ 𝑥$
𝑥# ⋅ 𝑦$ 𝑦# ⋅ 𝑦$ 𝑧# ⋅ 𝑦$
𝑥# ⋅ 𝑧$ 𝑦# ⋅ 𝑧$ 𝑧# ⋅ 𝑧$

𝑅"# =
−1 0 0
0 0 1
0 1 0

𝑅+" =
−1
0
0

0
0
−1

0
−1
0

𝑅+# =
−1 0 0
0 0 1
0 1 0

−1
0
0

0
0
−1

0
−1
0

=
1
0
0

0
−1
0

0
0
−1

This agrees with our earlier result!

𝑅+# = 𝑅"#𝑅+"



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅#$ =
𝑥# ⋅ 𝑥$ 𝑦# ⋅ 𝑥$ 𝑧# ⋅ 𝑥$
𝑥# ⋅ 𝑦$ 𝑦# ⋅ 𝑦$ 𝑧# ⋅ 𝑦$
𝑥# ⋅ 𝑧$ 𝑦# ⋅ 𝑧$ 𝑧# ⋅ 𝑧$

In preceding examples, we have computed 𝑅"!, 𝑅)!, 𝑅>!.
Can we compute 𝑅>)? 𝑅)" = 𝑅*"𝑅)*

𝑅*" +! 𝑅)" = 𝑅)*

𝑅*" , 𝑅)" = 𝑅)*

𝑅"*𝑅)" = 𝑅)*

𝑅)* =
1 0 0
0 −1 0
0 0 −1

0
−1
0

−1
0
0

0
0
−1

=
0
1
0

−1
0
0

0
0
1

Check this against the figure by directly determining 𝑅)*… it works!



Now let’s add translation…



Specifying Pose in the Plane

𝑥!

Suppose we now translate Frame 1 (no new rotatation). 
What are the coordinates of 𝑃 w.r.t. Frame 0? 

Since we merely translated 𝑃 by a fixed 
vector 𝑑, simply add the offset to our 
previous result!

𝑑:

𝒅𝟎 =
𝒅𝒙
𝒅𝒚

𝑦!
𝑃

𝑑

𝑑;

𝑥"

𝑦"

𝑑

𝑷𝟎 = 𝑹𝟏𝟎 𝑷𝟏 + 𝒅𝟎



Homogeneous Transformations

𝑷𝟎
1

= 𝑹𝟏𝟎𝑷𝟏 + 𝒅𝟎
1

= 𝑹𝟏𝟎 𝒅𝟎
0; 1

𝑷𝟏
1

We can simplify the equation for coordinate transformations 
by augmenting the vectors and matrices with an extra row: 

The set of matrices of the form 𝑅 𝑑
0? 1 , where 𝑅 ∈ 𝑆𝑂(𝑛) and 𝑑 ∈ ℝ? is called 

the Special Euclidean Group of order 𝒏, or 𝑆𝐸(𝑛).

in which 0? = 0 ⋯ 0

This is just our eqn from 
the previous page



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅#$ =
𝑥# ⋅ 𝑥$ 𝑦# ⋅ 𝑥$ 𝑧# ⋅ 𝑥$
𝑥# ⋅ 𝑦$ 𝑦# ⋅ 𝑦$ 𝑧# ⋅ 𝑦$
𝑥# ⋅ 𝑧$ 𝑦# ⋅ 𝑧$ 𝑧# ⋅ 𝑧$

10

5
4

Now let’s look at both the relative 
orientation and relative position of frames.



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑇"# =
−1
0
0
0

0
0
1
0

0
1
0
0

−5
0
4
110

5
4

𝑅"! =
−1 0 0
0 0 1
0 1 0



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑇)" =
−1
0
0
0

0
0
−1
0

0
−1
0
0

0
0
10
110

5
4

𝑅)" =
−1 0 0
0 0 −1
0 −1 0



Composition of Transformations

𝑥!

𝑦"

𝑦)

𝑦!
𝑥"

𝑥)

𝑃

M𝑃" = 𝑇)" M𝑃)
M𝑃! = 𝑇"!𝑃"

From our previous results, we know:

M𝑃! = 𝑇"!𝑇)" M𝑃)

M𝑃! = 𝑇)! M𝑃)
𝑇)! = 𝑇"!𝑇)"

But we also know:

𝑇!"
𝑇#!

𝑇#"

This is the composition law for 
homogeneous transformations.

Now, consider the rotation 
and the translation!

𝑧!

𝑧"

𝑧)

C𝑃 =

𝑝%
𝑃&
𝑝'
1



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

𝑇*! =
−1
0
0
0

0
0
−1
0

0
−1
0
0

0
0
10
1

10

5
4

𝑇!" =
−1
0
0
0

0
0
1
0

0
1
0
0

−5
0
4
1

𝑇*" =
−1
0
0
0

0
0
1
0

0
1
0
0

−5
0
4
1

−1
0
0
0

0
0
−1
0

0
−1
0
0

0
0
10
1

=
1
0
0
0

0
−1
0
0

0
0
−1
0

−5
10
4
1

Check this by directly determining 𝑇#" from the figure… it works! 



Inverse of a Homogeneous Transformation
What is the relationship between 𝑇DE and 𝑇E

D?

In general,   𝑇!
" = 𝑇"!

#$
and 𝑹 𝒅

0% 1
#$
= 𝑹𝑻 −𝑹𝑻𝒅

0% 1

This is easy to verify:

𝑹 𝒅
0? 1

𝑹𝑻 −𝑹𝑻𝒅
0? 1 = 𝑹𝑹𝑻 −𝑹𝑹𝑻𝒅 + 𝒅

0? 1 = 𝑰𝒏×𝒏 𝟎𝒏
0? 1 = 𝐼(?I")×(?I")



A bunch of examples:

𝑥" 𝑦"

𝑧"

𝑥!

𝑥#

𝑥$

𝑦!

𝑦#

𝑦$

𝑧!

𝑧#

𝑧$

A rectangular solid: all angles are multiples of 𝜋/2.

10

5
4

𝑇*" =
1
0
0
0

0
−1
0
0

0
0
−1
0

−5
10
4
1

Check this by directly determining 𝑇"# from the figure… it works! 

𝑇*" +! = 𝑹𝑻 −𝑹𝑻𝒅
0. 1 =

1
0
0
0

0
−1
0
0

0
0
−1
0

5
10
4
1

𝑇*" 𝑇*" +! =
1
0
0
0

0
−1
0
0

0
0
−1
0

−5
10
4
1

1
0
0
0

0
−1
0
0

0
0
−1
0

5
10
4
1

= 𝐼



Rotations about Coordinate Axes

𝑅',0 =
1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

𝑅(,1 =
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

𝑅2,3 =
cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

𝑥!

𝑦!

𝑧!



Roll, Pitch, and Yaw

𝑥

𝑦

𝑧When we parameterize the rotation matrices using 
𝑅 = 𝑅K,M𝑅;,N𝑅:,O, the angles are called roll, pitch, and yaw:
• Yaw 𝜓 is a rotation about the world’s 𝑧-axis.
• Pitch 𝜃 is a rotation about the plane’s 𝑦-axis (note, this 

axis moves as a function of the yaw angle).
• Roll 𝜙 is a rotation about the plane’s 𝑥-axis (note, this axis 

moves as a function of the yaw angle and the pitch 
angle).

This coordinate frame assignment is 
known as Forward-Left-Up (FLU).
• The 𝑥-axis is the Forward direction.
• The 𝑦-axis points to the Left.
• The z-axis points Up.



Parameterization of 3D Rotations
• Consider the three successive rotations: 𝑅 = 𝑅K,M𝑅;,N𝑅:,O = 𝑅;QR𝑅SETUV𝑅WXYY

𝑅K,M𝑅;,N𝑅:,O =
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

=
𝐶M𝐶N 𝐶M𝑆N𝑆O−𝑆M𝐶O 𝐶M𝑆N𝐶O + 𝑆M𝑆O
𝑆M𝐶N 𝑆M𝑆N𝑆O + 𝐶M𝐶O 𝑆M𝑆N𝐶O − 𝐶M𝑆O
−𝑆N 𝐶N𝑆O 𝐶N𝐶O



Parameterization of 3D Rotations
Any rotation matrix can be expressed in this form!

𝑟!! 𝑟!* 𝑟!)
𝑟*! 𝑟** 𝑟*)
𝑟)! 𝑟)* 𝑟))

=
𝐶3𝐶1 𝐶3𝑆1𝑆0−𝑆3𝐶0 𝐶3𝑆1𝐶0 + 𝑆3𝑆0
𝑆3𝐶1 𝑆3𝑆1𝑆0 + 𝐶3𝐶0 𝑆3𝑆1𝐶0 − 𝐶3𝑆0
−𝑆1 𝐶1𝑆0 𝐶1𝐶0

1. Solve for 𝜃 using r)! = −𝑆1
2. Solve for 𝜙 using r)* = 𝐶1𝑆0, 𝑟)) = 𝐶1𝐶0
3. Solve for 𝜓 using r!! = 𝐶3𝐶1, r*! = 𝑆3𝐶1

The function 𝐴𝑇𝐴𝑁2(𝑦, 𝑥) returns the angle whose tangent is 
𝑦/𝑥, in the appropriate quadrant. Thus:

𝜙 = 𝐴𝑇𝐴𝑁2(𝑟$#, 𝑟$$)
𝜓 = 𝐴𝑇𝐴𝑁2(𝑟#!, 𝑟!!)

We can parameterize SO(3) using these three angles, 𝝓,𝜽,𝝍.



Singularities for Roll, Pitch, Yaw
• For Roll, Pitch, and Yaw, when 𝑆N = 1, we have:

𝑅K,M𝑅;,N𝑅:,O =
𝐶M𝐶N 𝐶M𝑆N𝑆O−𝑆M𝐶O 𝐶M𝑆N𝐶O + 𝑆M𝑆O
𝑆M𝐶N 𝑆M𝑆N𝑆O + 𝐶M𝐶O 𝑆M𝑆N𝐶O − 𝐶M𝑆O
−𝑆N 𝐶N𝑆O 𝐶N𝐶O

=
0 𝐶M𝑆O−𝑆M𝐶O 𝐶M𝐶O + 𝑆M𝑆O
0 𝑆M𝑆O + 𝐶M𝐶O 𝑆M𝐶O − 𝐶M𝑆O
−1 0 0

When 𝑆( = 1, there are infinitely many solutions for 𝜓 and 𝜙. 
Only the difference 𝜙 − 𝜓 is uniquely determined.

So, this is only a local parameterization. 
It works when 𝑟$! ≠ ±1.



Singularities for Roll, Pitch, Yaw

𝑥

𝑦

𝑧Things break down when 𝜃 = ± )
#

--- but this makes sense!
If 𝜃 = ± )

#
then the planes 𝑥-axis is aligned with the world’s 𝑧-axis.

In this case, roll and yaw are rotations about the same axis!

• Roll, Pitch, and Yaw are useful when the plane is roughly horizontal. 
• If the plane tips completely up or completely down (i.e., 𝜃 = ± )

#
), things 

have already gone very wrong, so it’s not such a big deal that the 
parameterization breaks down for this case.

This coordinate frame assignment is 
known as Forward-Left-Up (FLU).
• The 𝑥-axis is the Forward direction.
• The 𝑦-axis points to the Left.
• The z-axis points Up.



Other Parameterization of 3D Rotations
Consider the three successive rotations: 𝑅 = 𝑅',)𝑅*,+𝑅,,-
where 𝑎, 𝑏, 𝑐 denote coordinate axes and 𝑎 ≠ 𝑏, 𝑏 ≠ 𝑐.

There are lots of possibilities!
𝑅.,-𝑅$,+𝑅.,)
𝑅#,-𝑅$,+𝑅.,)
𝑅#,-𝑅$,+𝑅#,)
𝑅$,-𝑅.,+𝑅#,)

⋮

𝑅.,-𝑅#,+𝑅.,)

• These are generically referred to as Euler angles.
• Each set of Euler angles admits a local parameterization of 𝑆𝑂(3).
• Like Roll-Pitch-Yaw, each Euler angle parameterization is a local

parameterization, and has problems for certain configurations.
• The configurations where things break down are referred to as 

singularities.
• These singularities are the reason Oculus was successful in the VR 

headset market.  Previous designs often used Euler angle 
parameterizations of rotation. Looking directly up caused the 
display to spin wildly.

• The z-y-z Euler angles are commonly used to parameterize the 
orientation of the wrist mechanism of robot manipulators.



Other Parameterization of 3D Rotations
- 3x3 matrices
- Quaternions: generalization of 

complex numbers:
- A rotation with an angle 𝜃 around the 

axis defined by the unit vector:

is represented by:

GTSAM can do both internally, chosen 
via compile-time flag.


