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Path Planning – a quick review

• path planning = finding a collision-free path from a start to a goal.
• The best algorithms have time complexity that increases 

exponentially in the dimension of the configuration space.
• low-dimensional configuration spaces: often find exact solutions.
• high-dimensional configuration spaces: good approximate solutions, or 

notions like probabilistic completeness. 

• Typically deal only with geometry: dynamics are not considered. 
• Considering dynamics can significantly increase the complexity.
• Cars are a special case: low-dimensional configuration space, but 

dynamics matter.



n In general, motion planning is intractable.
n For certain special cases, efficient algorithms exist.
n Mobile robots that move in the plane are much 

simpler than robot arms, mobile manipulators, 
humanoid robots, etc.

n The main simplifying property is that we can often 
treat path planning as a two-dimensional problem 
for a point moving in the plane, 𝑥 ∈ ℜ!.

Mobile Robots



Roadmap methods
Capture the connectivity of the free space by a 
graph or network of paths.



Roadmaps
A roadmap, 𝑅𝑀, is the union of one-dimensional curves such that 
for all 𝑥!"#$" and 𝑥%&#' that can be connected by a collision- free 
path:
n Accessibility: There is a collision-free path connecting 𝑥!"#$" to 

some point 𝑥( ∈ 𝑅𝑀.
n Departability: There is a collision-free path connecting 𝑥%&#' to 

some point 𝑥) ∈ 𝑅𝑀.
n Connectivity: There is a path in 𝑅𝑀 connecting 𝑥( and 𝑥).

If such a roadmap exists, then a free path from 𝑥!"#$" to 𝑥%&#'can 
be constructed from these three sub-paths, and the path planning 
problem can be reduced to finding the three sub-paths. 



RoadMap Path Planning
1. Build the roadmap

a) nodes are points in the free space or its boundary
b) two nodes are connected by an edge if there is a free path 

between them

2. Connect start end goal points to the road map
at point 𝑥( and 𝑥) , respectively

3. Find a path on the roadmap between 𝑥( and 𝑥)

The result is a path from start to goal



Shortest, But Possibly Dangerous Paths

The Visibility Graph



Visibility Graph methods

• If there is there a path, then the shortest path is in the visibility graph
• If we include the start and goal nodes, they are automatically connected
• Algorithms for constructing them can be efficient 

Ø𝑂 𝑛! brute force (i.e., naïve)
Ø𝑂 𝑛" log 𝑛 if clever

n Defined for polygonal obstacles
n Nodes correspond to vertices 

of obstacles
n Nodes are connected if

n they are connected by an 
edge on an obstacle

OR
n the line segment joining 

them is in free space



Safe Paths that Have Large Clearance 
to Obstacles

The Generalized Voronoi Diagram



Voronoi Diagrams



Generalized Voronoi Diagrams



A Discrete Version of the 
Generalized Voronoi Diagram

• use a discrete version of space and work from there

– The Brushfire algorithm is one way to do this
• need to define a grid on space 
• need to define connectivity (4/8)
• obstacles start with a 1 in grid; free space is zero
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Brushfire Algorithm

• Initially: create a queue 𝐿 of pixels on the boundary of all obstacles, set 
𝑑 𝑡 = 0 for each non-boundary grid cell 𝑡

• While 𝐿 ≠ ∅
– pop the top element 𝑡 of 𝐿
– if 𝑑(𝑡) = 0

• 𝑑 𝑡 ← 1 + min
#!∈% # ,' #! ()

𝑑(𝑡*)

• 𝐿 ← 𝐿 ∪ 𝑡* ∈ 𝑁 𝑡 𝑑 𝑡 = 0} /* add unvisited neighbors to 𝐿

The result is a distance map 𝑑 where each cell holds the minimum distance to 
an obstacle.

Local maxima of 𝑑 define the cells at which “wave fronts” cross, and these lie 
on the discrete Generalized Voronoi Diagram.



Brushfire example

Note	that	the	curves	
here	are	not	at	all	
perfect…



Application to Cars?

• These algorithms are great for wheeled mobile robots. Typically, 
these robots
– Have dynamics that aren’t significant
– Can rotate in place, and therefore can arbitrarily change direction
– Inhabit buildings, college compasses, other environments where free 

movement (i.e., not constrained to stay in a lane of a highway) is 
allowed.

• Cars don’t have these properties, so these algorithms can be less 
useful when planning motions for cars.



Sampling-Based Methods 
for Path Planning



Rapidly-Exploring Random Tree



Path Planning with RRTs

BUILD_RRT (qinit)  {
T.init(qinit); 
for k =  1 to K do 

qrand = RANDOM_CONFIG();    
EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit
qrand

[ Kuffner & LaValle , ICRA’00]



Left-turn only forward car



Application to Cars?

p These algorithms are great for complex planning problems, and 
can deal with 
n Complex dynamic models
n Global planning problems
n Complex environments

p This is a more complicated scenario than a car typically faces. 
For cars:
n Local motion planning is enough (don’t hit anything, stay on the road)
n Dynamics are simple, and can often be modeled using purely geometric 

approaches
n For a car, the search space for possible paths is highly constrained by the 

nonholonomic wheel constraints (i.e., cars can’t move sideways).
n Path Planning should be very fast!



A modification to path planning…
p Driving with tentacles

Felix von Hundelshausen, Michael Himmelsbach, Falk Hecker, Andre Mueller, 
and Hans-Joachim Wuensche, 2008.



2 ;
!

D Occupancy Grid (Elevation Map)



Occupancy grid value is computed to be the maximum difference of 
𝑧 coordinates of points in 3D space falling into that grid cell.
p Laser running at 10Hz, 100,000 3D measurements per cycle.
p No history is used in the occupancy grid data



Tentacles

The range of speeds from 0 to 10 m/s is represented 
by 16 speed sets, each containing 81 tentacles. Only 
four of these sets are shown here. The tentacles are 
circular arcs and start at the center of gravity of the 

vehicle.



(a) The support area covers all cells within a distance 𝑑! of the tentacle.

(b) The classification area is a subset of the support area covering all cells 
within a distance 𝑑" < 𝑑! of the tentacle. 

The classification area must be free for the tentacle to be drive-able.  The 
support area is preferred to be free.



Checking for Obstacles

The algorithm looks at 5 consecutive cells at a time (a sliding 
window) and reports an obstacle if at least 2 of the cells are 

occupied in the occupancy grid.



(b) shows the concept of classifying 
tentacles as non-drivable only in case of 
being occupied within a speed-dependent 
crash distance.  In this case, some drivable 
tentacles remain, allowing a pass of the car.

The red points mark the locations along the tentacles where the vehicle would hit either 
the car or the road border. As can be seen, no tentacle is free of obstacles. 

(a) By neglecting the 
distance to an obstacle, all 
tentacles would be 
classified non-drivable.



Traffic situations

Three possible ways to go.  
Handled well by a heuristic 
that prefers tentacles that 
are more similar to current 
direction of motion.

Relying on the tentacle 
algorithm alone would take 
the car into the opposing 
traffic lane.  Needs to be 
combined with additional 
safeguards.



Motion Planning for Cars

p The motion planning problem for cars is more complex than 
planning paths for wheeled mobile robots, but less complex than 
the general motion planning problem.
n Local planning will do the job.
n Car dynamics can be modeled well using geometric curves (i.e., no 

explicit computations of force momentum).
n Collision checking is reduced to finding intersection of curves with 

obstacles.
n A simple (2.5 D) map is a sufficiently rich representation of the 

environment.
n No need for global maps, and no need for persistent representations.


