
CS 3630
L25: Motion

Planning for Cars

With lots of slides and ideas
from:
Howie Choset, Steve Lavalle,
Greg Hager, Zack Dodds,
Nancy Amato, Sonia Chernova,
James Kuffner

Path Planning – a quick review

• path planning = finding a collision-free path from a start to a goal.
• The best algorithms have time complexity that increases

exponentially in the dimension of the configuration space.
• low-dimensional configuration spaces: often find exact solutions.
• high-dimensional configuration spaces: good approximate solutions, or

notions like probabilistic completeness.

• Typically deal only with geometry: dynamics are not considered.
• Considering dynamics can significantly increase the complexity.
• Cars are a special case: low-dimensional configuration space, but

dynamics matter.

n In general, motion planning is intractable.
n For certain special cases, efficient algorithms exist.
n Mobile robots that move in the plane are much

simpler than robot arms, mobile manipulators,
humanoid robots, etc.

n The main simplifying property is that we can often
treat path planning as a two-dimensional problem
for a point moving in the plane, 𝑥 ∈ ℜ!.

Mobile Robots

Roadmap methods
Capture the connectivity of the free space by a
graph or network of paths.

Roadmaps
A roadmap, 𝑅𝑀, is the union of one-dimensional curves such that
for all 𝑥!"#$" and 𝑥%&#' that can be connected by a collision- free
path:
n Accessibility: There is a collision-free path connecting 𝑥!"#$" to

some point 𝑥(∈ 𝑅𝑀.
n Departability: There is a collision-free path connecting 𝑥%&#' to

some point 𝑥) ∈ 𝑅𝑀.
n Connectivity: There is a path in 𝑅𝑀 connecting 𝑥(and 𝑥).

If such a roadmap exists, then a free path from 𝑥!"#$" to 𝑥%&#'can
be constructed from these three sub-paths, and the path planning
problem can be reduced to finding the three sub-paths.

RoadMap Path Planning
1. Build the roadmap

a) nodes are points in the free space or its boundary
b) two nodes are connected by an edge if there is a free path

between them

2. Connect start end goal points to the road map
at point 𝑥(and 𝑥) , respectively

3. Find a path on the roadmap between 𝑥(and 𝑥)

The result is a path from start to goal

Shortest, But Possibly Dangerous Paths

The Visibility Graph

Visibility Graph methods

• If there is there a path, then the shortest path is in the visibility graph
• If we include the start and goal nodes, they are automatically connected
• Algorithms for constructing them can be efficient

Ø𝑂 𝑛! brute force (i.e., naïve)
Ø𝑂 𝑛" log 𝑛 if clever

n Defined for polygonal obstacles
n Nodes correspond to vertices

of obstacles
n Nodes are connected if

n they are connected by an
edge on an obstacle

OR
n the line segment joining

them is in free space

Safe Paths that Have Large Clearance
to Obstacles

The Generalized Voronoi Diagram

Voronoi Diagrams

Generalized Voronoi Diagrams

A Discrete Version of the
Generalized Voronoi Diagram

• use a discrete version of space and work from there

– The Brushfire algorithm is one way to do this
• need to define a grid on space
• need to define connectivity (4/8)
• obstacles start with a 1 in grid; free space is zero

4 8

Brushfire Algorithm

• Initially: create a queue 𝐿 of pixels on the boundary of all obstacles, set
𝑑 𝑡 = 0 for each non-boundary grid cell 𝑡

• While 𝐿 ≠ ∅
– pop the top element 𝑡 of 𝐿
– if 𝑑(𝑡) = 0

• 𝑑 𝑡 ← 1 + min
#!∈% # ,' #! ()

𝑑(𝑡*)

• 𝐿 ← 𝐿 ∪ 𝑡* ∈ 𝑁 𝑡 𝑑 𝑡 = 0} /* add unvisited neighbors to 𝐿

The result is a distance map 𝑑 where each cell holds the minimum distance to
an obstacle.

Local maxima of 𝑑 define the cells at which “wave fronts” cross, and these lie
on the discrete Generalized Voronoi Diagram.

Brushfire example

Note	that	the	curves	
here	are	not	at	all	
perfect…

Application to Cars?

• These algorithms are great for wheeled mobile robots. Typically,
these robots
– Have dynamics that aren’t significant
– Can rotate in place, and therefore can arbitrarily change direction
– Inhabit buildings, college compasses, other environments where free

movement (i.e., not constrained to stay in a lane of a highway) is
allowed.

• Cars don’t have these properties, so these algorithms can be less
useful when planning motions for cars.

Sampling-Based Methods
for Path Planning

Rapidly-Exploring Random Tree

Path Planning with RRTs

BUILD_RRT (qinit) {
T.init(qinit);
for k = 1 to K do

qrand = RANDOM_CONFIG();
EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit
qrand

[Kuffner & LaValle , ICRA’00]

Left-turn only forward car

Application to Cars?

p These algorithms are great for complex planning problems, and
can deal with
n Complex dynamic models
n Global planning problems
n Complex environments

p This is a more complicated scenario than a car typically faces.
For cars:
n Local motion planning is enough (don’t hit anything, stay on the road)
n Dynamics are simple, and can often be modeled using purely geometric

approaches
n For a car, the search space for possible paths is highly constrained by the

nonholonomic wheel constraints (i.e., cars can’t move sideways).
n Path Planning should be very fast!

A modification to path planning…
p Driving with tentacles

Felix von Hundelshausen, Michael Himmelsbach, Falk Hecker, Andre Mueller,
and Hans-Joachim Wuensche, 2008.

2 ;
!

D Occupancy Grid (Elevation Map)

Occupancy grid value is computed to be the maximum difference of
𝑧 coordinates of points in 3D space falling into that grid cell.
p Laser running at 10Hz, 100,000 3D measurements per cycle.
p No history is used in the occupancy grid data

Tentacles

The range of speeds from 0 to 10 m/s is represented
by 16 speed sets, each containing 81 tentacles. Only
four of these sets are shown here. The tentacles are
circular arcs and start at the center of gravity of the

vehicle.

(a) The support area covers all cells within a distance 𝑑! of the tentacle.

(b) The classification area is a subset of the support area covering all cells
within a distance 𝑑" < 𝑑! of the tentacle.

The classification area must be free for the tentacle to be drive-able. The
support area is preferred to be free.

Checking for Obstacles

The algorithm looks at 5 consecutive cells at a time (a sliding
window) and reports an obstacle if at least 2 of the cells are

occupied in the occupancy grid.

(b) shows the concept of classifying
tentacles as non-drivable only in case of
being occupied within a speed-dependent
crash distance. In this case, some drivable
tentacles remain, allowing a pass of the car.

The red points mark the locations along the tentacles where the vehicle would hit either
the car or the road border. As can be seen, no tentacle is free of obstacles.

(a) By neglecting the
distance to an obstacle, all
tentacles would be
classified non-drivable.

Traffic situations

Three possible ways to go.
Handled well by a heuristic
that prefers tentacles that
are more similar to current
direction of motion.

Relying on the tentacle
algorithm alone would take
the car into the opposing
traffic lane. Needs to be
combined with additional
safeguards.

Motion Planning for Cars

p The motion planning problem for cars is more complex than
planning paths for wheeled mobile robots, but less complex than
the general motion planning problem.
n Local planning will do the job.
n Car dynamics can be modeled well using geometric curves (i.e., no

explicit computations of force momentum).
n Collision checking is reduced to finding intersection of curves with

obstacles.
n A simple (2.5 D) map is a sufficiently rich representation of the

environment.
n No need for global maps, and no need for persistent representations.

