Lecture 23

SLAM and

the ICP Algorithm

Lecture 22 Recap

LIDAR

UBERATC.COM/CAR

* Superpowers: » WSl RaVis
* 360 Visibility A ——
* Accurate depth! ___
* Almost all AV prototypes
have them (not all 360) . :

Images and exposition take from
excellent Voyage Blog post

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

Example

Images and exposition take from
excellent Voyage Blog post

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

Coordinate Transformations for LIDAR Data

. i Rw_lxb Xw yb°xw
’\P Zdiri b Xb " Yw "Yw

"= l

| PY =RY PP +1v |

Or, we can write this using homogeneous
transformations as:

-1 0

Localization

using ICP

As the sensor moves through the world, it collects a
data set (a point cloud) for multiple positions.

The localization problem is to infer the pose of the
sensor, given the point clouds for successive scans.

This requires:

1. finding correspondences between data points in
successive images, and

2. computing the relative pose for two successive
scans, given the set of point correspondences.

We'll solve this problem using the Iterative Closest
Points algorithm, also known as ICP.

Localization with LIDAR

* |CP = Iterated Closest Points:
e Call current scan S, map M

* Predict pose from motion model:
use other sensors if available

* |terate:
* For every point s: find closest m
* Re-estimate pose

* In practice:

* outlier rejection to account for moving Image Credits: Innoviz
objects, unmodeled structures, parked
cars etc...

Learning to Localize Using a LiDAR Intensity Map

Ioan Andrei Birsan*'? Shenlong Wang™-!> Andrei Pokrovsky' Raquel Urtasun'2

[] []
1Uber ATG, 2University of Toronto
{andreib, slwang, andrei, urtasun}Quber.com
Abstract: In this paper we propose a real-time, calibration-agnostic and effective
localization system for self-driving cars. Our method learns to embed the online

LiDAR sweeps and intensity map into a joint deep embedding space. Localiza-
tion is then conducted through an efficient convolutional matching between the
embeddings. Our full system can operate in real-time at 15Hz while achieving
centimeter level accuracy across different LIDAR sensors and environments. Our

experiments illustrate the performance of the proposed approach over a large-scale

e E .8., rece nt paper fro m U be r ATG dataset consisting of over 4000km of driving.

. . . . K ds: D Learning, Localization, Map-based Localizati
 “reliable and accurate localization remains an open problem,” YRR T e, Toction, Tp e e

* “[ICP] can lead to high-precision localization, but remain vulnerable in the ! Introduction

presence Of geometnca”y non_d|st|nct|ve orre pet|t|ve enV|r0nments SUCh as One of the fundamental problems in autonomous driving is to be able to accurately localize the
. . ” ’ vehicle in real time. Different precision requirements exist depending on the intended use of the
tu nne I S) h | ghwayS) or b rl dgeS localization system. For routing the self-driving vehicle from point A to point B, precision of a few

meters is sufficient. However, centimeter-level localization becomes necessary in order to exploit
high definition (HD) maps as priors for robust perception, prediction, and safe motion planning.

Despite many decades of research, reliable and accurate localization remains an open problem, es-
pecially when very low latency is required. Geometric methods, such as those based on the iterative
closest-point algorithm (ICP) [1, 2] can lead to high-precision localization, but remain vulnerable in
the presence of geometrically non-distinctive or repetitive environments, such as tunnels, highways,
or bridges. Image-based methods [3, 4, 5, 6] are also capable of robust localization, but are still
behind geometric ones in terms of outdoor localization precision. Furthermore, they often require
capturing the environment in different seasons and times of the day as the appearance might change
dramatically.

Target Mop k- o] Sweep Localization Results

A promising alternative to these methods is to leverage LiDAR intensity maps [7, 8], which encode
information about the appearance and semantics of the scene. However, the intensity of commercial
LiDARSs is inconsistent across different beams and manufacturers, and prone to changes due to envi-
ronmental factors such as temperature. Therefore, intensity based localization methods rely heavily
on having very accurate intensity calibration of each LIDAR beam. This requires careful fine-tuning
of each vehicle to achieve good performance, sometimes even on a daily basis. Calibration can be
a very laborious process, limiting the scalability of this approach. Online calibration is a promising
solution, but current approaches fail to deliver the desirable accuracy. Furthermore, maps have to be
re-captured each time we change the sensor, e.g., to exploit a new generation of LiDAR.

In this paper, we address the aforementioned problems by learning to perform intensity based lo-
calization. Towards this goal, we design a deep network that embeds both LiDAR intensity maps
and online LiDAR sweeps in a common space where calibration is not required. Localization is
then simply done by searching exhaustively over 3-DoF poses (2D position on the map manifold
plus rotation), where the score of each pose can be computed by the cross-correlation between the
embeddings. This allows us to perform localization in a few milliseconds on the GPU.

We demonstrate the effectiveness of our approach in both highway and urban environments over
4000km of roads. Our experiments showcase the advantages of our approach over traditional meth-
ods, such as the ability to work with uncalibrated data and the ability to generalize across different
LiDAR sensors.

(d) A Sham turn 1nto an intersection. 2nd Conference on Robot Learning (CoRL 2018), Ziirich, Switzerland.

Topics

1. Applications
2. Basic ICP Algorithm
3. ICP Variants

* Includes slides adapted from Marc Pollefeys
and James Hayes.

Motivation

* 3D Scanners are becoming more and more prevalent
e 2D lasers now built into vacuuming robots
* Sensor of choice in autonomous vehicles

e Simple way to do SLAM

ICP in Robotics

https://www.youtube.com/watch?v=NiSOFNyC5RY
https://www.youtube.com/watch?v=9rTkUZ7HV o

https://www.youtube.com/watch?v=Ni8OFNyC5RY
https://www.youtube.com/watch?v=9rTkUZ7HV_o

ICP Qutdoors

laboratory

Gerstner

Gerstner Lab, Prague

U be r A\/S Try it live: https://avs.auto/demo/index.html

T C @ QO & avs.auto

£ Most Visited @ Gett 0y Started 0 Al Sorts of Usedul Stufl

{ly Streetscape.gl

Aronomonss

https://avs.auto/demo/index.html

 http://graphics.stanford.edu/projects/mich/

Map of Rome

http://graphics.stanford.edu/projects/forma-urbis/database.html

1 [2 [3 [4 [5 [6 [7 B 9 [10 X1
5 6 7 8 9 10i X
4 5 6 7] 9 IX
9
4 I(Am. 5 6 7 8 vII
COLOS:
: : 17
o |1 | 1 |12 |iwa]| 15 | 16 [138 | 19 21 VI
13 PORTICUS ~
5 6 7 8 9 10 vl
9 |10 | u |12 % 14 | 15| 16 [17| 18 |19 | 20 |[21i¥
|
5 \ 7 8 9 v
THES MPEY
8 9 0| 1 | 12 | 3|14 |15 [16 |17 |18 | 19 im
5 | 6 7 /| / 8 9 10 1 im
| mmweveR | 1 | 12 | 13 /
/—\ \ / 15016 17 |18 | 19 [20 |21
P9 i1 14

lkeuchi Lab
Bayon Project

* http://www.cvl.iis.u-tokyo.ac.jp/research/bayon/

Aligning 3D Data

* How to find corresponding points?
* How to calculate a transform between two point clouds?

Fitting and
Alignment: Methods

* Global optimization / Search for parameters
* Least squares fit
* Robust least squares
* Other parameter search methods

* Hypothesize and test
* Generalized Hough transform
 RANSAC

 [terative Closest Points (ICP)

Iterative Closest
Points (ICP)
Algorithm

https://www.terra-drone.net/angola/lidar-powerlines/

Goal: estimate transform between two dense sets of points

Initialize transformation (e.g., compute difference in means and scale)

Assign each point in {Set 1} to its nearest neighbor in {Set 2}

Estimate transformation parameters using least squares

Transform the points in {Set 1} using estimated parameters

i Ao W N BB

Repeat steps 2-4 until change is very small

https://www.terra-drone.net/angola/lidar-powerlines/

Aligning 3D Data

Assume closest points correspond to each other,
compute the best transform...

o Y

Aligning 3D Data

... and iterate to find alignment
Iterated Closest Points (ICP) [Besl & McKay 92]

Converges if starting position “close enough”

/ 7

Example: solving for translation

(ty ty)
—>
Image A

ICP solution
1. Find nearest neighbors for each point B A {
2. Compute transform using matches OO S At T
3. Move points using transform yiB yiA ty
4. Repeat steps 1-3 until convergence

Finding Nearest Neighbors

* Points in Image A are P4 = {P1A; ---Pﬁq}
* Points in Image B are P = {P£, ... PF}

* For each point in P/* € P4 compute

pB — arg;reljiDI}g”p — PA|

* This gives us a set of matching pairs:
t(PL, P), - (B PR

Example: solving for translation

In this example, the matching process would yield

{(44,B), (4, B3), (A3,B;)}

Example: solving for translation

Example: solving for translation

Least squares solution

1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution
3. Computational solution
a) Write in form Ht=b
b) Solve using pseudo-inverse t* =H*b

(we can’t use inverse t=Hb as H is not square -> pseudo-inverse)

(to ty)

B 4
X — X
B 4
Y1 =W
B 4
xi’l _xn
B 4
Vo =V,

Solving for Translation

We have two equations for

each correspondence:

=

t
t

<

t
t

=

<

o~
&

= x7 —xf
=yr —y{
= x5 — X3
=y5 —y3
= x5 — x5
=Yy — Y

1 0 x7 — x4

0 1, |¥@ =i
— : Elt]: :

1 0|7 xB — x4

0 1 Ly — yil

Now, we can build the pseudoinverse for H:

1. (HTH)"'HTH =1
2 (HTH)"'HT = gt
3 (HTH)"'HTH = H*H
= (HTH) 'HTH =1

Cool: We can “invert” a non-square matrix!

We can write this as a matrix equation:

Useful facts about H:

H e]RZnXZ
SHE =D — | HT € R

(HTH)—l € RZXZ
(HTH)—lHT =]RZXZTI

There are conditions and caveats for this,
but we won’t worry about these in this
class.

Computing the Translation (just simple algebra)

==

1 O
0 1

H=|: :
1 0) Ty _[1 0
0 1d HH_[O 1
1 0 .. 1 0

T _

H _lO 1 .. 0 1]

S S|k
S|—= O

S S|k

3m o

1 0_
|
1

O _

i n.
xB — x
yi —yi
xB — x4
Ve — Vi

1
1o]?
Oli

-0

Lo]

3|

1 -
- 0
n 0] I (HTH)™1 = 1
0 n 0 =
| nA
1
0 — 0
n
1 0 1
n n-

OK... it’s a bit disappointing to do all of
that work only to find that we estimate
the translation as the average translation
of all the points, but the good news is that
this pseudoinverse approach generalizes
to more interesting cases.

Estimating Pose for SO(2)

* Suppose two sets of data points differ only by a rotation (e.g., the sensor merely rotates to collect successive scans).

To start, suppose we have only one data point in each 2D image:

pr=lal P=)]

Consider the expression

bxray byay

ax
PA(PB)T — [ay] [bx by] = bxay byay]

Now, recall the construction of the rotation matrix R},

Xp * Xa yb'xa]
Xpb*Ya Vb Va

Rj =|
There’s a striking similarity between these, and this motivates (but does not prove or even really explain) the following:

T
* LetH = Y P/ (P?) where the sum is taken over corresponding pairs.
* The best estimate for the rotation matrix Rz is the matrix R € SO(2) that is closest to H in the least squares sense!

Estimating Pose for SE (2)

 We know how to solve for the rotation in the case where the two point sets differ only by rotation.

e Suppose now that there is also a translation.

* Since all points undergo the same translation, we compute the centroid for each point set, and then
use the translation between the two centroids as the estimate of translation:

1 1
CA=N2P{4, CB=N2PL-B

* Now, merely “subtract out the translation, and we can use the previous method to estimate the
rotation:

H=) (PA—ct)(pF-c®)

and, as before, R4 is the matrix R € SO(2) that is closest to H in the least squares sense!

For the translation, solve
CA=RACE + g

Example: aligning boundaries in images

1. Extract edge pixels py..pn and q4..qgm

2. Compute initial transformation (e.g., compute translation and scaling by
center of mass, variance within each image)

3. Get nearest neighbors: for each point p; find corresponding match(i) =
argmin dist(pi, qj)
J
4. Compute transformation T based on matches

5. Warp points p accordingto T

6. Repeat 3-5 until convergence

|CP Variants

* Classic ICP algorithm not real-time

* To improve speed: examine stages of ICP and evaluate proposed variants

* [Rusinkiewicz & Levoy, 3DIM 2001]

A AN o e

Selecting source points (from one or both meshes)
Matching to points in the other mesh

Weighting the correspondences

Rejecting certain (outlier) point pairs

Assigning an error metric to the current transform

Minimizing the error metric

CP Variant —
Point-to-Plane Error Metric

* Using point-to-plane distance instead of point-to-point lets flat regions slide along
each other more easily [Chen & Medioni 91]

S
N
S

// NEEER)

Finding Corresponding Points

* Finding closest point is most expensive stage of ICP
e Brute force search — O(n)
 Spatial data structure (e.g., k-d tree) — O(log n)
* Voxel grid — O(1), but large constant, slow preprocessing

Finding Corresponding Points

* For range images, simply project point [Blais 95]
e Constant-time, fast
* Does not require precomputing a spatial data structure

High-Speed ICP Algorithm

* ICP algorithm with projection-based correspondences, point-to-plane
matching can align meshes in a few tens of ms.
(cf. over 1 sec. with closest-point)

[Rusinkiewicz & Levoy, 3DIM 2001]

Summary

1. Applications are plentiful
2. Basic ICP Algorithm is simple (but slow)
3. |ICP Variants can speed up

Simultaneous Localization and Mapping (SLAM)
* We know how to do localization using ICP.

* We've seen how to build maps, under the
assumption that we know the pose of the robot.

» SLAM is the problem of performing these two
operations simultaneously.

SLAM became a super important problem in robotics
when autonomous vehicles came on the scene.

3. SLAM

* Mapping runs drive all accessible streets
* Record LIDAR, GPS, IMU (gyro + accel)

e SLAM: Simultaneous Localization and Mapping
* Given a map, we can localize

* Given accurate localization, we can build a map!
e Do it simultaneously!

* HD-Map: point clouds + annotations

PoseSLAM: R Fre) fawey Ml
- L& .

SLAM with ICP s ~— B

* One way: PoseSLAM:
* Do ICP between overlapping scans
* Can use GPS/IMU to decide which scans overlap

e Optimize for 3D or 2D poses only

* Re-construct HD map from laser-scans
afterwards

; g 360.here.com

4. The PoseSLAM Factor Graph

i fa(Ty, T5)
* Pose constraint = Factor 1 —e 5 (1
* MPE: maximize posterior
f5(T5,12) @ ® [f3(15,T4)
o(T) =] ¢:(T:)
- () () (;
7 ® Ty @ 15 @ T3
fo(Th) —/ fi(Th,T3) —/ f2(T3,T5)

* In the example:
* 4 constraints by matching successive scans
* 1 “loop closure” constraint
* 1 "anchor” factor to give unique solution

Linear Least Squares

* |f two assumptions hold:
* measurement function is linear
* Noise is zero-mean Gaussian

| 1 AN
Mo = o {1 (25)')

fa(Ty, T5)
TSJ @ \T4
f5(15,T2) @ ® [f3(15,T4)
() () (-
® Tl @ T2 @ T3
fo(Th) —/ fi(Th,T3) —/ f2(T3,T5)

Linear Least Squares

* |f two assumptions hold: f(T3, T)
. . . T5 T4
e measurement function is linear J -
* Noise is zero-mean Gaussian
f5(15,T>) @ ® f3(13,1T4)
9 1 1 fx— p\?
Moy = e {1 (222)
2702 2\ o () () (71
® T ® @ T3
fo(T1) f1(Th, 1) fo(T2,T3)
* Then we can solve via linear least squares.
* Example: x-coordinates only, minimize prediction error:
~ 1 1
Zij ~ h(xix;) = ©; — x; (i, 2j) = —o=exp {—5 (x5 — @ — Zi5)°

—

; o ! ~
(h(zi; z5) — .I',']‘)'Z = arg 1‘11\1}1‘12 (z; — z; — Tyj)
X

BN | =
b |

X* = arg min E
X

k

2

Factor Graph for Two Poses

fa(Ty, Ts)

* Each pose Tj is really a pose relative to the fixed, world coordinate frame.
* Let’s write this explicitly as Tl-O — T;

« The factor f4 (T4, Ts) expresses the relationship between the two poses T, and Ts, specifically, f3(T,, Ts) = Tx.
e |f all measurements were perfect and without noise, we would have
Ts = T Ts
(T =Tg
(THTHT =1

So, the optimization problem is to make the product (T¢")~1(T2) 1T be close to the identity matrix.

Pose constraints are nonlinear!

. . fa(Ty,T:
* Measurement prediction: 1) (. ! (m
hT;, T;) =TT,
(v]) . J f5(T5,T>2) @ ® f3(13,1})
e Measurement error: o (7)o (1. o— (1
fo(Ty) U f1(1y,Ts) U fa(T,T3)

1 s 2

o (75273

* Here log! is a magic function converting a
pose to three numbers & = (dx, oy, 06)
that measure how far a pose is from the origin

Ltechnically, matrix logarithm, the inverse of the matrix exponential exp.

Incremental Pose Parameters

* Given an estimate fora pose T € SE(2), we can update it via

T ~TA(§)
1 =00 | oz |
& = (0x, 0y, 00) A)=| 660 1 |dy
0O 0 I

e With this we can approximate each factor Iineérly:

Hlog(A7 1T)H 1A£z+A£J bl

* Small print: For small increments, this works well, although we have to make sure to re-normalize the rotation afterwards.
In practice, GTSAM uses something that holds even for large increments (an exponential map).

Solving a succession of linear problems

Summary:

e Start with an initial estimate 7

e [terate:

1. Linearize the factors i ||log (i e) H ~ 3 || A& + A& — bl|*

2. Solve the least squares problem =* = arg ming) _, 5 | Ari&i + Agi&; — bi||?
3. Update T/t « T;A(&:)

2
e Until the nonlinear error J(7) Zk 5 Hlog (1T T) H converges.

Optimization with GTSAM

GISAM 4.0

Factor graphs for Sensor Fusion in Robotics.

* The GTSAM toolbox (Georgia Tech Smoothing and Mapping) toolbox is
a BSD-licensed C++ library based on factor graphs

* Website at http://gtsam.org.
 GTSAM exploits sparsity to be computationally efficient.

http://gtsam.org/

C++ Example

fa(T4, T5)
f5(15,12) @
() ()
@ Th @ T @
fo(Ty) P f1(Th, Tz) N/ f2(T2,T3)

NonlinearFactorGraph graph;

auto priorNoise = noiseModel::Diagonal::Sigmas((Vector(3)<< 0.3, 0.3, 0.1))
graph.add (PriorFactor<Pose2>(1, Pose2(0,0,0),

// Add odometry factors

priorNoise));

auto model = noiseModel::Diagonal::Sigmas((Vector(3)<< 0.2, 0.2, 0.1));

graph.add (BetweenFactor <Pose2>(1,
graph.add (BetweenFactor <Pose2>(2,
graph.add (BetweenFactor <Pose2>(3,
graph.add (BetweenFactor <Pose2>(4,

// Add pose constraint
graph.add (BetweenFactor <Pose2>(5,

2’
3,
4,
5

b

2,

Pose2 (2,
Pose2 (2,
Pose2 (2,
Pose2(2,

Pose2 (2,

O’
0,
0,
0

b

0,

0),
M_PI_2),
M_PI_2),
M_PI_2),

M_PI.2),

model)) ;
model)) ;
model)) ;
model)) ;

model)) ;

Python Example o

f5(T5,12) @ ® f3(13,Ty)

() () (7
[Th @ T o T
fo(Ty) P f1(Th, Tz) —/ f2(T2,T3) Q

1 |graph = gtsam.NonlinearFactorGraph ()
2> |priorNoise = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.3, 0.3, 0.1))
3 |graph.add(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), priorNoise))

5 |# Create odometry (Between) factors between consecutive poses

¢ |model = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.2, 0.2, 0.1))

7 |graph.add(gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2, 0, 0), model))

s |graph.add(gtsam.BetweenFactorPose2(2, 3, gtsam.Pose2(2, 0, pi/2), model))
9 |graph.add(gtsam.BetweenFactorPose2(3, 4, gtsam.Pose2(2, 0, pi/2), model))
10 |graph.add(gtsam.BetweenFactorPose2(4, 5, gtsam.Pose2(2, 0, pi/2), model))

-

-

12 |# Add the loop closure constraint
13 |graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2, 0, pi/2), model))

Optimization In

Python

10
11
12

2.5~

0.5

-0.5|-

-0.5 (l) 0{5 1{5 l2 21.5 é‘) 315 41.5
Create the initial estimate
initial_estimate = gtsam.Values ()
initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial_estimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial_estimate.insert (3, gtsam.Pose2(4.1, 0.1, pi/2))
initial_estimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
initial_estimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi/2))

Optimize the initial values using a Gauss-Newton nonlinear optimizer

optimizer = gtsam.GaussNewtonOptimizer (graph,
result = optimizer.optimize ()

print ("Final Result:\n{}".format (result))

initial_estimate)

Summary

LIDAR is a key sensor for autonomous driving

Localization can be done with LIDAR, or image-based
PoseSLAM: a SLAM variant using ICP pose constraints

The PoseSLAM factor graph graphically shows the constraints
MAP/MPE solution can be done via nonlinear optimization

A A S

GTSAM is an easy way to optimize over poses in C++/MATLAB/python

