
CS 3630

Lecture 23:
SLAM and
the ICP Algorithm

Lecture 22 Recap

LIDAR

• Superpowers:
• 360 Visibility
• Accurate depth!

• Almost all AV prototypes
have them (not all 360)

Images and exposition take from
excellent Voyage Blog post https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

Example

Images and exposition take from
excellent Voyage Blog post

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

Coordinate Transformations for LIDAR Data

𝑥!

𝑦!

𝑃" = 𝑑#�̂�#

𝑥"
𝑦"

𝑡

𝑷𝒘 = 𝑹𝒃𝒘 𝑷𝒃 + 𝒕𝒘
�̂�!

𝑅!" =
𝑥! ⋅ 𝑥" 𝑦! ⋅ 𝑥"
𝑥! ⋅ 𝑦" 𝑦! ⋅ 𝑦"

𝑡" =
𝑡#
𝑡$

𝑷𝒘
1 = 𝑹𝒃𝒘 𝒕𝒘

0' 1
𝑷𝒃
1

Or, we can write this using homogeneous
transformations as:

Localization
using ICP

As the sensor moves through the world, it collects a
data set (a point cloud) for multiple positions.
The localization problem is to infer the pose of the
sensor, given the point clouds for successive scans.
This requires:
1. finding correspondences between data points in

successive images, and
2. computing the relative pose for two successive

scans, given the set of point correspondences.

We’ll solve this problem using the Iterative Closest
Points algorithm, also known as ICP.

Localization with LIDAR

• ICP = Iterated Closest Points:
• Call current scan S, map M
• Predict pose from motion model:

use other sensors if available
• Iterate:

• For every point s: find closest m
• Re-estimate pose

• In practice:
• outlier rejection to account for moving

objects, unmodeled structures, parked
cars etc…

Image Credits: Innoviz

Still an active area of
research
• E.g., recent paper from Uber ATG
• “reliable and accurate localization remains an open problem,”
• “[ICP] can lead to high-precision localization, but remain vulnerable in the

presence of geometrically non-distinctive or repetitive environments, such as
tunnels, highways, or bridges”

Topics

1. Applications
2. Basic ICP Algorithm
3. ICP Variants

• Includes slides adapted from Marc Pollefeys
and James Hayes.

Motivation

• 3D Scanners are becoming more and more prevalent
• 2D lasers now built into vacuuming robots
• Sensor of choice in autonomous vehicles
• Simple way to do SLAM

ICP in Robotics

https://www.youtube.com/watch?v=Ni8OFNyC5RY
https://www.youtube.com/watch?v=9rTkUZ7HV_o

https://www.youtube.com/watch?v=Ni8OFNyC5RY
https://www.youtube.com/watch?v=9rTkUZ7HV_o

ICP Outdoors

Gerstner Lab, Prague

Uber AVS Try it live: https://avs.auto/demo/index.html

https://avs.auto/demo/index.html

Digital Michelangelo

• http://graphics.stanford.edu/projects/mich/

Map of Rome
http://graphics.stanford.edu/projects/forma-urbis/database.html

Ikeuchi Lab
Bayon Project

• http://www.cvl.iis.u-tokyo.ac.jp/research/bayon/

Aligning 3D Data

• How to find corresponding points?
• How to calculate a transform between two point clouds?

Fitting and
Alignment: Methods

• Global optimization / Search for parameters
• Least squares fit
• Robust least squares
• Other parameter search methods

• Hypothesize and test
• Generalized Hough transform
• RANSAC

• Iterative Closest Points (ICP)

Iterative Closest
Points (ICP)
Algorithm

Goal: estimate transform between two dense sets of points

1. Initialize transformation (e.g., compute difference in means and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters using least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

https://www.terra-drone.net/angola/lidar-powerlines/

https://www.terra-drone.net/angola/lidar-powerlines/

Aligning 3D Data
Assume closest points correspond to each other,
compute the best transform…

Aligning 3D Data

… and iterate to find alignment
Iterated Closest Points (ICP) [Besl & McKay 92]

Converges if starting position “close enough“

Example: solving for translation

(tx, ty)

ú
û

ù
ê
ë

é
+ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é

y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

ICP solution

1. Find nearest neighbors for each point
2. Compute transform using matches
3. Move points using transform
4. Repeat steps 1-3 until convergence

Image A Image B

Finding Nearest Neighbors

• Points in Image A are 𝒫& = 𝑃'&, …𝑃(&
• Points in Image B are 𝒫) = 𝑃'), …𝑃()

• For each point in 𝑃#& ∈ 𝒫& compute

𝑃) = arg min
*∈𝒫!

𝑝 − 𝑃#&

• This gives us a set of matching pairs:
𝑃'&, 𝑃-"

) , … , 𝑃(&, 𝑃-#
)

Example: solving for translation

A1

A2 A3
B2

B3 B1

In this example, the matching process would yield

𝐴!, 𝐵" , 𝐴", 𝐵# , 𝐴#, 𝐵!

A1

A2 A3

Given matched points in 𝐴!, 𝐵" , 𝐴", 𝐵# , 𝐴#, 𝐵! , estimate the translation of the object

ú
û

ù
ê
ë

é
+ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é

y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

B2

B3 B1

Example: solving for translation

Example: solving for translation

Least squares solution

ú
û

ù
ê
ë

é
+ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é

y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

(tx, ty)

1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ht=b
b) Solve using pseudo-inverse t* =H+b ú

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-
-

-
-

=ú
û

ù
ê
ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

A
n

B
n

A
n

B
n

AB

AB

y

x

yy
xx

yy
xx

t
t

!!!

11

11

10
01

10
01

(we can’t use inverse t=H-1b as H is not square -> pseudo-inverse)

A1

A2 A3
B2

B3 B1

Solving for Translation
We can write this as a matrix equation:

1 0
0 1
⋮ ⋮
1 0
0 1

𝑡"
𝑡# =

𝑥$% − 𝑥$&

𝑦$% − 𝑦$&
⋮

𝑥'% − 𝑥'&

𝑦'% − 𝑦'&

→ 𝐻𝑡 = 𝑏

𝑡" = 𝑥$% − 𝑥$&

𝑡# = 𝑦$% − 𝑦$&

𝑡" = 𝑥(% − 𝑥(&

𝑡# = 𝑦)% − 𝑦(&

⋮
𝑡" = 𝑥'% − 𝑥'&

𝑡# = 𝑦'% − 𝑦'&

Useful	facts	about	𝐻:

𝐻 ∈ ℝ('×(
𝐻+ ∈ ℝ(×('

𝐻+𝐻 ,$ ∈ ℝ(×(
𝐻+𝐻 ,$𝐻+ ∈ ℝ(×('

We have two equations for
each correspondence:

Now, we can build the pseudoinverse for 𝑯:

1. 𝐻+𝐻 ,$𝐻+𝐻 = 𝐼
2. 𝐻+𝐻 ,$𝐻+ = 𝐻-
3. 𝐻+𝐻 ,$𝐻+𝐻 = 𝐻-𝐻

= 𝐻+𝐻 ,$𝐻+𝐻 = 𝐼

Cool: We can “invert” a non-square matrix!

There are conditions and caveats for this,
but we won’t worry about these in this
class.

Computing the Translation (just simple algebra)

𝐻 =

1 0
0 1
⋮ ⋮
1 0
0 1

𝐻+ = 1 0 … 1 0
0 1 … 0 1

𝐻+𝐻 = 1 0 … 1 0
0 1 … 0 1

1 0
0 1
⋮ ⋮
1 0
0 1

= 𝑛 0
0 𝑛

𝐻+𝐻 ,$ =

1
𝑛 0

0
1
𝑛

𝐻- = 𝐻+𝐻 ,$𝐻+ =

1
𝑛 0

0
1
𝑛

1 0 … 1 0
0 1 … 0 1 =

1
𝑛 0 …

1
𝑛 0

0
1
𝑛

…
0

1
𝑛

1
𝑛 0 …

1
𝑛 0

0
1
𝑛 … 0

1
𝑛

𝑥$% − 𝑥$&

𝑦$% − 𝑦$&
⋮

𝑥'% − 𝑥'&

𝑦'% − 𝑦'&

=

1
𝑛N

!

𝑥!% − 𝑥!&

1
𝑛N

!

𝑦!% − 𝑦!&

OK… it’s a bit disappointing to do all of
that work only to find that we estimate
the translation as the average translation
of all the points, but the good news is that
this pseudoinverse approach generalizes
to more interesting cases.

Estimating Pose for SO(2)
• Suppose two sets of data points differ only by a rotation (e.g., the sensor merely rotates to collect successive scans).

• To start, suppose we have only one data point in each 2D image:

𝑃& =
𝑎"
𝑎# , 𝑃%=

𝑏"
𝑏#

• Consider the expression

𝑃& 𝑃% + =
𝑎"
𝑎#

𝑏" 𝑏# =
𝑏"𝑎" 𝑏#𝑎"
𝑏"𝑎# 𝑏#𝑎#

• Now, recall the construction of the rotation matrix 𝑅./

𝑅%& =
𝑥. ⋅ 𝑥/ 𝑦. ⋅ 𝑥/
𝑥. ⋅ 𝑦/ 𝑦. ⋅ 𝑦/

There’s a striking similarity between these, and this motivates (but does not prove or even really explain) the following:
• Let 𝐻 = ∑𝑃!& 𝑃!%

+
where the sum is taken over corresponding pairs.

• The best estimate for the rotation matrix U𝑅%& is the matrix 𝑅 ∈ 𝑆𝑂(2) that is closest to 𝐻 in the least squares sense!

Estimating Pose for 𝑆𝐸(2)
• We know how to solve for the rotation in the case where the two point sets differ only by rotation.
• Suppose now that there is also a translation.
• Since all points undergo the same translation, we compute the centroid for each point set, and then

use the translation between the two centroids as the estimate of translation:

𝐶$ =
1
𝑁
/𝑃%$, 𝐶& =

1
𝑁
/𝑃%&

• Now, merely “subtract out the translation, and we can use the previous method to estimate the
rotation:

𝐻 =/ 𝑃%$ − 𝐶$ 𝑃%& − 𝐶&
'

and, as before, 3𝑅&$ is the matrix 𝑅 ∈ 𝑆𝑂(2) that is closest to 𝐻 in the least squares sense!

• For the translation, solve
𝐶$ = 3𝑅&$𝐶& + �̂�&$

Example: aligning boundaries in images
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚
2. Compute initial transformation (e.g., compute translation and scaling by

center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding match(i) =
argmin

0
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p q

ICP Variants
• Classic ICP algorithm not real-time

• To improve speed: examine stages of ICP and evaluate proposed variants

• [Rusinkiewicz & Levoy, 3DIM 2001]

1. Selecting source points (from one or both meshes)
2. Matching to points in the other mesh
3. Weighting the correspondences
4. Rejecting certain (outlier) point pairs
5. Assigning an error metric to the current transform
6. Minimizing the error metric

ICP Variant –
Point-to-Plane Error Metric
• Using point-to-plane distance instead of point-to-point lets flat regions slide along

each other more easily [Chen & Medioni 91]

Finding Corresponding Points

• Finding closest point is most expensive stage of ICP
• Brute force search – O(n)
• Spatial data structure (e.g., k-d tree) – O(log n)
• Voxel grid – O(1), but large constant, slow preprocessing

Finding Corresponding Points
• For range images, simply project point [Blais 95]

• Constant-time, fast
• Does not require precomputing a spatial data structure

High-Speed ICP Algorithm

• ICP algorithm with projection-based correspondences, point-to-plane
matching can align meshes in a few tens of ms.
(cf. over 1 sec. with closest-point)

[Rusinkiewicz & Levoy, 3DIM 2001]

Summary

1. Applications are plentiful
2. Basic ICP Algorithm is simple (but slow)
3. ICP Variants can speed up

SLAM

Simultaneous Localization and Mapping (SLAM)
• We know how to do localization using ICP.
• We’ve seen how to build maps, under the

assumption that we know the pose of the robot.
Ø SLAM is the problem of performing these two

operations simultaneously.

SLAM became a super important problem in robotics
when autonomous vehicles came on the scene.

3. SLAM

• Mapping runs drive all accessible streets

• Record LIDAR, GPS, IMU (gyro + accel)

• SLAM: Simultaneous Localization and Mapping
• Given a map, we can localize
• Given accurate localization, we can build a map!
• Do it simultaneously!

• HD-Map: point clouds + annotations

360.here.com

• One way: PoseSLAM:
• Do ICP between overlapping scans
• Can use GPS/IMU to decide which scans overlap
• Optimize for 3D or 2D poses only
• Re-construct HD map from laser-scans

afterwards

360.here.com

PoseSLAM:
SLAM with ICP

4. The PoseSLAM Factor Graph

• Pose constraint = Factor
• MPE: maximize posterior

• In the example:
• 4 constraints by matching successive scans
• 1 “loop closure” constraint
• 1 ”anchor” factor to give unique solution

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

• If two assumptions hold:
• measurement function is linear
• Noise is zero-mean Gaussian

Linear Least Squares

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

• If two assumptions hold:
• measurement function is linear
• Noise is zero-mean Gaussian

• Then we can solve via linear least squares.
• Example: x-coordinates only, minimize prediction error:

Linear Least Squares

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

Factor Graph for Two Poses

𝑇1 𝑇2
𝑓2(𝑇2, 𝑇1)

• Each pose 𝑇% is really a pose relative to the fixed, world coordinate frame.
• Let’s write this explicitly as 𝑇%(← 𝑇%

• The factor 𝑓)(𝑇), 𝑇*) expresses the relationship between the two poses 𝑇) and 𝑇*, specifically, 𝑓) 𝑇), 𝑇* = 𝑇*).

• If all measurements were perfect and without noise, we would have

𝑇*(= 𝑇)(𝑇*)
𝑇)(+!𝑇*(= 𝑇*)

𝑇*) +! 𝑇)(+!𝑇*(= 𝐼

So, the optimization problem is to make the product 𝑇*) +! 𝑇)(+!𝑇*(be close to the identity matrix.

Pose constraints are nonlinear!

• Measurement prediction:

• Measurement error:

• Here log1 is a magic function converting a
pose to three numbers
that measure how far a pose is from the origin

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

1 technically, matrix logarithm, the inverse of the matrix exponential exp.

Incremental Pose Parameters

• Given an estimate for a pose 𝑇 ∈ 𝑆𝐸(2), we can update it via

• With this we can approximate each factor linearly:

• Small print: For small increments, this works well, although we have to make sure to re-normalize the rotation afterwards.
In practice, GTSAM uses something that holds even for large increments (an exponential map).

Solving a succession of linear problems

Summary:

Optimization with GTSAM

• The GTSAM toolbox (Georgia Tech Smoothing and Mapping) toolbox is
a BSD-licensed C++ library based on factor graphs
• Website at http://gtsam.org.
• GTSAM exploits sparsity to be computationally efficient.

http://gtsam.org/

C++ Example

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

Python Example

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

Optimization in
Python

Summary

1. LIDAR is a key sensor for autonomous driving
2. Localization can be done with LIDAR, or image-based
3. PoseSLAM: a SLAM variant using ICP pose constraints
4. The PoseSLAM factor graph graphically shows the constraints
5. MAP/MPE solution can be done via nonlinear optimization
6. GTSAM is an easy way to optimize over poses in C++/MATLAB/python

