
CS 3630!

Lecture 18: 
Differential Drive Robots:               

Motion Planning



Diff Drive Recap



Configuration Space
• A configuration is a complete specification of the position of every point in a robot system.

• The configuration space is the set of all configurations.

• We use 𝑞 to denote a point in a configuration space 𝒬.

𝒙
𝒚

𝑶 = 𝒙, 𝒚

𝜃

𝒚𝒘𝒐𝒓𝒍𝒅
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Because our DDR can rotate in the plane, it is 
necessary to know both the position and the 
orientation of the body-attached frame to specify a 
configuration:

𝒬 = ℝ!× 0,2𝜋

𝑞 = 𝑥, 𝑦, 𝜃 ∈ 𝒬

If we know the configuration, 𝑞 = 𝑥, 𝑦, 𝜃 , we can 
compute the location of any point on the robot.



Path Planning



Path Planning
• Find a collision-free path from the starting configuration 𝑞#$#% to a goal configuration 𝑞&'().
• Collision checking between the robot and obstacles can be computationally heavy, so we 

deal with this by mapping obstacles in the world to the robot’s configuration space.
• In the configuration space, we now have the problem of finding a path for a single point 

(which represents the configuration of the robot).
• In general, computing this mapping can be difficult computationally, but it’s not so bad for 

robots that translate in the plane.



Obstacles in C-Space
• Let 𝑞 denote a point in a configuration space 𝒬
• The path planning problem is to find a mapping 𝛾: 0,1 → 𝒬 s.t. no 

configuration along the path intersects an obstacle.
• Denote the i-th workspace obstacle by 𝒪", and by 𝑅 𝑞 the volume occupied 

by the robot at configuration 𝑞.
• A configuration space obstacle 𝒬𝒪" is the set of configurations 𝑞 at which the 

robot intersects 𝒪"

𝒬𝒪" = 𝑞 ∈ 𝒬 𝑅 𝑞 ∩ 𝒪" ≠ ∅}

• The free configuration space (or just free space) 𝒬#$%% is

𝒬#$%% = 𝒬 −∪" 𝒬𝒪"

• A free path is a mapping 𝛾: 0,1 → 𝒬#$%%.



Disc in 2-D workspace
workspace configuration 

space



Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y



Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot
(treat as point object)

x,y



Planning a Collision-Free Path

𝑞&'()

𝑞*+*,

Find a collision-free path from 𝒒𝒊𝒏𝒊𝒕 to 𝒒𝒈𝒐𝒂𝒍



Planning a Collision-Free Path

𝑞&'()

𝑞*+*,

Find a collision-free path from 𝒒𝒊𝒏𝒊𝒕 to 𝒒𝒈𝒐𝒂𝒍



Planning a Collision-Free Path

𝑞&'()

𝑞*+*,

Find a collision-free path from 𝒒𝒊𝒏𝒊𝒕 to 𝒒𝒈𝒐𝒂𝒍



Probabilistic 
Roadmaps

With so many slides and ideas from so many people, 
including:

Howie Choset, Nancy Amato, David Hsu, 
Sonia Chernova, Steve LaValle, James Kuffner, 
Greg Hager, Ji Yeong Lee 



Completeness

p Complete algorithm à Slow
n A complete algorithm finds a path if one exists and reports no otherwise in finite time.
n Heuristic algorithm à Unreliable (e.g., potential fields)

p Probabilistic completeness
n Intuition: If there is a solution path, the algorithm will find it with high probability.



The Rise of Monte Carlo Techniques

• KEY IDEA:
Rather than exhaustively explore ALL possibilities, randomly explore a smaller subset of possibilities while 
keeping track of progress

• Facilities “probing” deeper in a search tree much earlier than any exhaustive algorithm can

• What’s the catch?
Typically, we must sacrifice both completeness and optimality
Classic tradeoff between solution quality and runtime performance

Search for collision-free path 
only by sampling points.

Sampling Based Planning:



Probabilistic	Road	Map	(PRM)

• Probabilistic	Roadmap	methods	proceed	in	two	phases:	

1.Preprocessing	Phase	– to	construct	the	roadmap	G	
2.Query	Phase	– to	search	given	𝑞:;:< and	𝑞=>?@

The	roadmap	is	an	undirected	graph	G	=	(N,	E).	The	nodes	in	N	
are	a	set	of	configurations	of	the	robot	chosen	over	C-free.	The	
edges	in	E	correspond	to	feasible	straight-line	paths.	



Probabilistic Roadmap (PRM): 
multiple queries

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone



Assumptions
p Static obstacles
p Many queries to be processed in the same 

environment
p Examples

n Navigation in static virtual environments
n Robot manipulator arm in a workcell

p Advantages: 
n Amortize the cost of planning over many problems
n Probabilistically complete



Uniform sampling
Input: geometry of the moving object & obstacles
Output: roadmap G = (V, E)

1: V ¬ Æ and E ¬ Æ.
2: repeat
3:   q ¬ a configuration sampled uniformly at random from C.

4:    if CLEAR(q)then
5: Add q to V.
6:      Nq ¬ a set of nodes in V that are close to q.

6:      for each q’Î Nq, in order of increasing d(q,q’)
7:        if LINK(q’,q)then
8:          Add an edge between q and q’ to E.



Some terminology
p The graph G is called a probabilistic roadmap. 
p The nodes in G are called milestones.



How do we determine a random free configuration?
p We want the nodes of V to be a uniform sampling of Qfree

n Draw each of its coordinates from the interval of values of the 
corresponding degrees of freedom. (Use the uniform probability 
distribution over the interval)

n Check for collision both with robot itself and with obstacles

n If collision free, add to V, otherwise discard

n What about rotations? Strategies for sampling orientation are beyond 
the scope of this class. Since DDRs live in the plane, we could 
merely sample uniformly in the interval [0, 2𝜋].



What’s the local path planner: Link(q’,q) ?

p There are plenty of possibilities

n Nondeterministic (include a randomized “wandering” component)
p We’ll have to store local paths in roadmap

n Powerful
p Slower but maybe we’ll need fewer nodes if we do some hard work during roadmap 

construction?

n Fast and simple
p Less powerful, Roadmap will need more nodes



Go with the fast local planner

p Need to make sure start and goal configurations can connect to graph, which 
requires a somewhat dense roadmap

p Can reuse local planner at query time to connect start and goal 
configurations

p Don’t need to memorize local paths



Why does it work? Intuition
p A small number of milestones almost “cover” the 

entire configuration space. 

p Rigorous definitions exist (of course!)



Optimizing	the	path

• Milestone-based	paths	are	far	from	optimal	and	require	additional	
refinement	before	they	are	usable

• A	typical	solution	can	look	like	this:

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡



Optimizing	the	path

• A	simple	way	to	improve	the	path,	is	to	repeatedly	pick	two	nodes	
at	random,	and	check	whether	they	can	be	connected	by	a	straight	
line	without	collision.		If	so,	use	the	line	to	shorten	the	path.

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡



Smoothing	the	path

• Optionally,	the	shortened	path	can	then	be	smoothed	to	allow	for	
continuous	robot	motion

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡



Good news, but bad news too

Sample-based: The Good News
1. probabilistically complete
2. Do not construct the C-space
3.     apply easily to high-dimensional C-space
4.     support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously 
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

Sample-Based: The Bad News
1. don’t work as well for some problems:
– unlikely to sample nodes in narrow passages
– hard to sample/connect nodes on constraint surfaces
2. No optimality or completeness

start

goal

C-obst

C-obst

C-obst

C-obst



Rapidly-
Exploring 
Random Trees 
(RRTs)

With so many slides and ideas from so many people, 
including:

Howie Choset, Nancy Amato, David Hsu, 
Sonia Chernova, Steve LaValle, James Kuffner, 
Greg Hager, Ji Yeong Lee 



Rapidly-Exploring	Random	Tree	(RRT)

• Searches	for	a	path	from	the	initial	configuration	to	the	goal	
configuration	by	expanding	a	search	tree	

• For	each	step,	
• The	algorithm	samples	a	target	configuration	and	expands	the	tree	
towards	it.	

• The	sample	can	either	be	a	random	configuration	or	the	goal	
configuration	itself,	depends	on	the	probability	value	defined	by	the	user.	



Naïve	random	tree

• Pick	a	vertex	at	random
• Move	in	a	random	direction	to	generate	a	new	vertex
• Repeat…



Rapidly-Exploring Random Tree



The	Basic	Idea:	Iteratively	expand	the	tree

• Denote	by	𝑇A the	tree	at	iteration	𝑘

• Randomly	choose	a	configuration	𝑞B?;C

• Choose	𝑞;D?B = arg min
E∈F!

𝑑(𝑞, 𝑞B?;C)
Ø𝑞$,(- is	the	nearest	existing	node	in	the	tree	to	𝑞-($.

• Create	a	new	node,	𝑞;DG by	taking	a	small	step	from	𝑞;D?B toward	𝑞B?;C



Path Planning with RRTs

BUILD_RRT (qinit)  {
T.init(qinit); 
for k =  1 to K do 

qrand = RANDOM_CONFIG();    
EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit
qrand

[ Kuffner & LaValle , ICRA’00]



RRTs and 
Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html



Why are RRT’s rapidly exploring? 

The	probability	of	a	node	being	selected	for	expansion	(i.e.	being	a	
nearest	neighbor	to	a	new	randomly	picked	point)	is	proportional	to	
the	area	of	its	Voronoi region.



Biases

• Bias toward larger spaces
• Bias toward goal

– When generating a random sample, with some probability pick the goal instead of a random 
node when expanding

– This introduces another parameter
– James’ experience is that 5-10% is the right choice
– If you do this 100%, then this is a RPP



RRT
Requires the following functions:

• p = RandomSample() 

Ø Uniform random sampling of free configuration space

• v = Nearest(p)  

Ø Given point in Cspace, find vertex on tree that is closest to that point

• p’ = Steer(p, goal) 

Ø For a point p and a goal point, find p’ that is closer to the goal than p

• ObstacleFree(p) 

Ø Check if a given Cspace point is in the free space



RRT in Action…
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RRT - Bias to Goal



Articulated Robot



Highly Articulated Robot  



Hovercraft with 2 Thusters



Out of This World Demo



Left-turn only forward car



Rapidly-Exploring	Random	Tree	(RRT)

• Advantages	of	RRT:	very	fast,	works	well	for	dynamic	
environments

• Disadvantages:	Not	optimal	
• in	fact,	it	has	been	proven	by	Karaman &	Frazzoli that	the	probability	of	
RRT	converging	to	an	optimal	solution	is	0



Variants	of	RRT

• There	are	(very)	many…

• Rapidly-exploring	Random	Graph	(RRG):
• Connect	all	vertices	within	neighboring	region,	forming	a	graph

• RRT*:
• a	variant	of	RRG	that	essentially	“rewires"	the	tree	as	better	paths	are	
discovered.	



Summary

• Both	RRT	and	PRM	are	examples	of	sampling	based	algorithms
that	are	probabilistically	complete

• Definition:	A	path	planner	is	probabilistically	complete if,	given	a	
solvable	problem,	the	probability	that	the	planner	solves	the	
problem	goes	to	1	as	time	goes	to	infinity.



Links to Further Reading

• Steve LaValle’s online book:
“Planning Algorithms” (chapters 5 & 14)
http://planning.cs.uiuc.edu/

• The RRT page:
http://msl.cs.uiuc.edu/rrt/

• Motion Planning Benchmarks
Parasol Group, Texas A&M
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

http://planning.cs.uiuc.edu/
http://msl.cs.uiuc.edu/rrt/
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

