
CS 3630!

Lecture 18:
Differential Drive Robots:

Motion Planning

Diff Drive Recap

Configuration Space
• A configuration is a complete specification of the position of every point in a robot system.

• The configuration space is the set of all configurations.

• We use 𝑞 to denote a point in a configuration space 𝒬.

𝒙
𝒚

𝑶 = 𝒙, 𝒚

𝜃

𝒚𝒘𝒐𝒓𝒍𝒅

𝒙𝒘𝒐𝒓𝒍𝒅

Because our DDR can rotate in the plane, it is
necessary to know both the position and the
orientation of the body-attached frame to specify a
configuration:

𝒬 = ℝ!× 0,2𝜋

𝑞 = 𝑥, 𝑦, 𝜃 ∈ 𝒬

If we know the configuration, 𝑞 = 𝑥, 𝑦, 𝜃 , we can
compute the location of any point on the robot.

Path Planning

Path Planning
• Find a collision-free path from the starting configuration 𝑞#$#% to a goal configuration 𝑞&'().
• Collision checking between the robot and obstacles can be computationally heavy, so we

deal with this by mapping obstacles in the world to the robot’s configuration space.
• In the configuration space, we now have the problem of finding a path for a single point

(which represents the configuration of the robot).
• In general, computing this mapping can be difficult computationally, but it’s not so bad for

robots that translate in the plane.

Obstacles in C-Space
• Let 𝑞 denote a point in a configuration space 𝒬
• The path planning problem is to find a mapping 𝛾: 0,1 → 𝒬 s.t. no

configuration along the path intersects an obstacle.
• Denote the i-th workspace obstacle by 𝒪", and by 𝑅 𝑞 the volume occupied

by the robot at configuration 𝑞.
• A configuration space obstacle 𝒬𝒪" is the set of configurations 𝑞 at which the

robot intersects 𝒪"

𝒬𝒪" = 𝑞 ∈ 𝒬 𝑅 𝑞 ∩ 𝒪" ≠ ∅}

• The free configuration space (or just free space) 𝒬#$%% is

𝒬#$%% = 𝒬 −∪" 𝒬𝒪"

• A free path is a mapping 𝛾: 0,1 → 𝒬#$%%.

Disc in 2-D workspace
workspace configuration

space

Example of a World (and Robot)

Obstacles

Free Space

Robot

x,y

Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot
(treat as point object)

x,y

Planning a Collision-Free Path

𝑞&'()

𝑞*+*,

Find a collision-free path from 𝒒𝒊𝒏𝒊𝒕 to 𝒒𝒈𝒐𝒂𝒍

Planning a Collision-Free Path

𝑞&'()

𝑞*+*,

Find a collision-free path from 𝒒𝒊𝒏𝒊𝒕 to 𝒒𝒈𝒐𝒂𝒍

Planning a Collision-Free Path

𝑞&'()

𝑞*+*,

Find a collision-free path from 𝒒𝒊𝒏𝒊𝒕 to 𝒒𝒈𝒐𝒂𝒍

Probabilistic
Roadmaps

With so many slides and ideas from so many people,
including:

Howie Choset, Nancy Amato, David Hsu,
Sonia Chernova, Steve LaValle, James Kuffner,
Greg Hager, Ji Yeong Lee

Completeness

p Complete algorithm à Slow
n A complete algorithm finds a path if one exists and reports no otherwise in finite time.
n Heuristic algorithm à Unreliable (e.g., potential fields)

p Probabilistic completeness
n Intuition: If there is a solution path, the algorithm will find it with high probability.

The Rise of Monte Carlo Techniques

• KEY IDEA:
Rather than exhaustively explore ALL possibilities, randomly explore a smaller subset of possibilities while
keeping track of progress

• Facilities “probing” deeper in a search tree much earlier than any exhaustive algorithm can

• What’s the catch?
Typically, we must sacrifice both completeness and optimality
Classic tradeoff between solution quality and runtime performance

Search for collision-free path
only by sampling points.

Sampling Based Planning:

Probabilistic	Road	Map	(PRM)

• Probabilistic	Roadmap	methods	proceed	in	two	phases:	

1.Preprocessing	Phase	– to	construct	the	roadmap	G	
2.Query	Phase	– to	search	given	𝑞:;:< and	𝑞=>?@

The	roadmap	is	an	undirected	graph	G	=	(N,	E).	The	nodes	in	N	
are	a	set	of	configurations	of	the	robot	chosen	over	C-free.	The	
edges	in	E	correspond	to	feasible	straight-line	paths.	

Probabilistic Roadmap (PRM):
multiple queries

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone

Assumptions
p Static obstacles
p Many queries to be processed in the same

environment
p Examples

n Navigation in static virtual environments
n Robot manipulator arm in a workcell

p Advantages:
n Amortize the cost of planning over many problems
n Probabilistically complete

Uniform sampling
Input: geometry of the moving object & obstacles
Output: roadmap G = (V, E)

1: V ¬ Æ and E ¬ Æ.
2: repeat
3: q ¬ a configuration sampled uniformly at random from C.

4: if CLEAR(q)then
5: Add q to V.
6: Nq ¬ a set of nodes in V that are close to q.

6: for each q’Î Nq, in order of increasing d(q,q’)
7: if LINK(q’,q)then
8: Add an edge between q and q’ to E.

Some terminology
p The graph G is called a probabilistic roadmap.
p The nodes in G are called milestones.

How do we determine a random free configuration?
p We want the nodes of V to be a uniform sampling of Qfree

n Draw each of its coordinates from the interval of values of the
corresponding degrees of freedom. (Use the uniform probability
distribution over the interval)

n Check for collision both with robot itself and with obstacles

n If collision free, add to V, otherwise discard

n What about rotations? Strategies for sampling orientation are beyond
the scope of this class. Since DDRs live in the plane, we could
merely sample uniformly in the interval [0, 2𝜋].

What’s the local path planner: Link(q’,q) ?

p There are plenty of possibilities

n Nondeterministic (include a randomized “wandering” component)
p We’ll have to store local paths in roadmap

n Powerful
p Slower but maybe we’ll need fewer nodes if we do some hard work during roadmap

construction?

n Fast and simple
p Less powerful, Roadmap will need more nodes

Go with the fast local planner

p Need to make sure start and goal configurations can connect to graph, which
requires a somewhat dense roadmap

p Can reuse local planner at query time to connect start and goal
configurations

p Don’t need to memorize local paths

Why does it work? Intuition
p A small number of milestones almost “cover” the

entire configuration space.

p Rigorous definitions exist (of course!)

Optimizing	the	path

• Milestone-based	paths	are	far	from	optimal	and	require	additional	
refinement	before	they	are	usable

• A	typical	solution	can	look	like	this:

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

Optimizing	the	path

• A	simple	way	to	improve	the	path,	is	to	repeatedly	pick	two	nodes	
at	random,	and	check	whether	they	can	be	connected	by	a	straight	
line	without	collision.		If	so,	use	the	line	to	shorten	the	path.

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

Smoothing	the	path

• Optionally,	the	shortened	path	can	then	be	smoothed	to	allow	for	
continuous	robot	motion

𝑔𝑜𝑎𝑙

𝑠𝑡𝑎𝑟𝑡

Good news, but bad news too

Sample-based: The Good News
1. probabilistically complete
2. Do not construct the C-space
3. apply easily to high-dimensional C-space
4. support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

Sample-Based: The Bad News
1. don’t work as well for some problems:
– unlikely to sample nodes in narrow passages
– hard to sample/connect nodes on constraint surfaces
2. No optimality or completeness

start

goal

C-obst

C-obst

C-obst

C-obst

Rapidly-
Exploring
Random Trees
(RRTs)

With so many slides and ideas from so many people,
including:

Howie Choset, Nancy Amato, David Hsu,
Sonia Chernova, Steve LaValle, James Kuffner,
Greg Hager, Ji Yeong Lee

Rapidly-Exploring	Random	Tree	(RRT)

• Searches	for	a	path	from	the	initial	configuration	to	the	goal	
configuration	by	expanding	a	search	tree	

• For	each	step,	
• The	algorithm	samples	a	target	configuration	and	expands	the	tree	
towards	it.	

• The	sample	can	either	be	a	random	configuration	or	the	goal	
configuration	itself,	depends	on	the	probability	value	defined	by	the	user.	

Naïve	random	tree

• Pick	a	vertex	at	random
• Move	in	a	random	direction	to	generate	a	new	vertex
• Repeat…

Rapidly-Exploring Random Tree

The	Basic	Idea:	Iteratively	expand	the	tree

• Denote	by	𝑇A the	tree	at	iteration	𝑘

• Randomly	choose	a	configuration	𝑞B?;C

• Choose	𝑞;D?B = arg min
E∈F!

𝑑(𝑞, 𝑞B?;C)
Ø𝑞$,(- is	the	nearest	existing	node	in	the	tree	to	𝑞-($.

• Create	a	new	node,	𝑞;DG by	taking	a	small	step	from	𝑞;D?B toward	𝑞B?;C

Path Planning with RRTs

BUILD_RRT (qinit) {
T.init(qinit);
for k = 1 to K do

qrand = RANDOM_CONFIG();
EXTEND(T, qrand)

}

EXTEND(T, qrand)

qnear

qnew

qinit
qrand

[Kuffner & LaValle , ICRA’00]

RRTs and
Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

Why are RRT’s rapidly exploring?

The	probability	of	a	node	being	selected	for	expansion	(i.e.	being	a	
nearest	neighbor	to	a	new	randomly	picked	point)	is	proportional	to	
the	area	of	its	Voronoi region.

Biases

• Bias toward larger spaces
• Bias toward goal

– When generating a random sample, with some probability pick the goal instead of a random
node when expanding

– This introduces another parameter
– James’ experience is that 5-10% is the right choice
– If you do this 100%, then this is a RPP

RRT
Requires the following functions:

• p = RandomSample()

Ø Uniform random sampling of free configuration space

• v = Nearest(p)

Ø Given point in Cspace, find vertex on tree that is closest to that point

• p’ = Steer(p, goal)

Ø For a point p and a goal point, find p’ that is closer to the goal than p

• ObstacleFree(p)

Ø Check if a given Cspace point is in the free space

RRT in Action…

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT

RRT - Bias to Goal

Articulated Robot

Highly Articulated Robot

Hovercraft with 2 Thusters

Out of This World Demo

Left-turn only forward car

Rapidly-Exploring	Random	Tree	(RRT)

• Advantages	of	RRT:	very	fast,	works	well	for	dynamic	
environments

• Disadvantages:	Not	optimal	
• in	fact,	it	has	been	proven	by	Karaman &	Frazzoli that	the	probability	of	
RRT	converging	to	an	optimal	solution	is	0

Variants	of	RRT

• There	are	(very)	many…

• Rapidly-exploring	Random	Graph	(RRG):
• Connect	all	vertices	within	neighboring	region,	forming	a	graph

• RRT*:
• a	variant	of	RRG	that	essentially	“rewires"	the	tree	as	better	paths	are	
discovered.	

Summary

• Both	RRT	and	PRM	are	examples	of	sampling	based	algorithms
that	are	probabilistically	complete

• Definition:	A	path	planner	is	probabilistically	complete if,	given	a	
solvable	problem,	the	probability	that	the	planner	solves	the	
problem	goes	to	1	as	time	goes	to	infinity.

Links to Further Reading

• Steve LaValle’s online book:
“Planning Algorithms” (chapters 5 & 14)
http://planning.cs.uiuc.edu/

• The RRT page:
http://msl.cs.uiuc.edu/rrt/

• Motion Planning Benchmarks
Parasol Group, Texas A&M
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

http://planning.cs.uiuc.edu/
http://msl.cs.uiuc.edu/rrt/
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

