Differential Drive Robots:
Kinematics

CS 3630!

Lecture 15:

Rounding up Logistics:

Recap:

- 2D continuous space
- Omnidirectional motion
- Gaussian motion model
- Complex sensors
- Sophisticated perception

One approach to path planning:

- Place high reward at the goal configuration.
- Place negative reward along obstacle edges.
- Compute the value function.
- Follow the gradient of the value function from the current configuration to the goal.

Reminder about Value Iteration

Recall the Value Iteration Equation:

$$
\left.V^{k+1}(x) \leftarrow \max _{a}\left\{\bar{R}(x, a)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a\right)\right) V^{k}\left(x^{\prime}\right)\right\}
$$

- $\overline{\boldsymbol{R}}(\boldsymbol{x}, \boldsymbol{a})$ is the expected reward for applying action \boldsymbol{a} in state \boldsymbol{x}.
- $\left.P\left(x^{\prime} \mid x, a\right)\right)$ is the motion model.
- $V^{k}\left(\boldsymbol{x}^{\prime}\right)$ is the approximation to the optimal value function at iteration \boldsymbol{k}.
$>$ For classical path planning, we ignore uncertainty, so that $\left.\boldsymbol{P}\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{x}, \boldsymbol{a}\right)\right)=\mathbf{1}$ for the deterministic outcome, and $\left.\boldsymbol{P}\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{x}, \boldsymbol{a}\right)\right)=\mathbf{0}$ for all other outcomes.
$>$ If we add a bit of uncertainty, we increase robustness of the plan (e.g., decrease the probability that the robot might accidentally collide with an obstacle).

Value Iteration in the Warehouse

- In our warehouse example, we set the reward to 100 for the goal, and to -50 for obstacle edges, and used value iteration to compute the value function:

- To move from any point in the warehouse toward the goal, simply follow the gradient of the value function!

Value Iteration at Work

- Value iteration is expensive.
- At each iteration, we must compute N updates (one for each possible state).
- For the warehouse, we have $N=50 \times 100=5000$.
- Many problems have much larger state spaces, which makes value iteration impractical (and possibly intractable).

$>$ At each iteration, every grid cell updates its estimate of the optimal value function.

Kinematics of Differential Drive Robots

Our logistics robot had super simple kinematics:

- Thanks to omni-wheels, the logistics robot could roll in any direction at any time.
- Because of this, there was no need to pay attention to the orientation of the robot.
- We didn't really worry about a body-attached coordinate frame, since the robot frame was always parallel to the world frame.

Differential Drive Robots don't have omni-wheels...

- The kinematics (relationship between input commands and robot motion) are more interesting.
- We need to explicitly pay attention to the orientation.

Mobile Robots

- There are many kinds of wheeled mobile robots.
- We have seen omni-directional robots.
- Now we'll study differential drive robots.

Mobile Robot Kinematics

- Relationship between input commands (e.g., wheel velocity) and pose of the robot, not considering forces. If the wheels turn at a certain rate, what is the resulting robot motion?
- No direct way to measure pose (unless we sensorize the environment), but we can integrate velocity (odometry) to obtain a good estimate.

FIGURE I. THE MAZE SOLVING COMPUTER.

More Modern AGVs

Differential Drive Robots

Two wheels with a common axis, and that can spin independently

The Duckiebot Platform

A typical DDR, with two actuated wheels in front, and a passive castor wheel in the back.

Differential Drive Robots

Differential drive robots (aka DDRs):

- Two actuated wheels that share an axis
- A castor wheel that rotates freely, mainly to stabilize the robot (three points define a plane - castor wheel keeps the robot from tipping over).

Differential Drive Robots

To specify the position and orientation of the DDR, we attach a coordinate frame to the robot.

- This frame is called the body-attached frame, or the robot frame.
- The body attached frame is rigidly attached to the robot: it translates and rotates with the robot.
- The origin of the body-attached frame is located at the midpoint between the two wheels along their axis of rotation.
- The x-axis is the steering (or driving) direction of the robot.
- The y -axis is coincident with the common axis.

Configuration Space

- A configuration is a complete specification of the position of every point in a robot system.
- The configuration space is the set of all configurations.
- We use q to denote a point in a configuration space Q.

Example:

- Our logistics robot was able to translate in the plane.
- It's orientation never changed (i.e., it could not rotate).
- We can attach a coordinate frame with origin at the center of the robot, and axes parallel to the world x - and y-axes.
- If we know the x, y coordinates of this coordinate frame, we can easily determine the location of any desired point on the robot w.r.t. the world coordinate frame (in the x - y plane).

Configuration Space

- A configuration is a complete specification of the position of every point in a robot system.
- The configuration space is the set of all configurations.
- We use q to denote a point in a configuration space Q.

Example:

- Our logistics robot was able to translate in the plane.
- It's orientation never changed (i.e., it could not rotate).
- We can attach a coordinate frame with origin at the center of the robot, and axes parallel to the world x - and y-axes.
- If we know the x, y coordinates of this coordinate frame, we can easily determine the location of any desired point on the robot w.r.t. the world coordinate frame (in the x - y plane).
- For example, if the robot has radius R, then the center of wheel 2 is:

$$
\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{\text {robot }}+R \cos \theta_{2} \\
y_{\text {robot }}+R \sin \theta_{2}
\end{array}\right]
$$

Configuration Space

- A configuration is a complete specification of the position of every point in a robot system.
- The configuration space is the set of all configurations.
- We use q to denote a point in a configuration space \mathcal{Q}.

In this example, the configuration space is easy to characterize:

$$
\begin{gathered}
\mathcal{Q}=\mathfrak{D} \subset \mathbb{R}^{2} \\
q=(x, y) \in \mathfrak{D}
\end{gathered}
$$

where \mathfrak{D} is the floor space of the warehouse.

$>$ Given $q=(x, y)$, we can calculate the position of any point on the robot.
$>$ Note: This assumes, of course, that we have a model of our robot, which we do.

Configuration Space for a DDR

Because our DDR can rotate in the plane, it is necessary to know both the position and the orientation of the body-attached frame to specify a configuration:

$$
\begin{aligned}
& \mathcal{Q}=\mathbb{R}^{2} \times[0,2 \pi) \\
& q=(x, y, \theta) \in \mathcal{Q}
\end{aligned}
$$

If we know the configuration, $q=(x, y, \theta)$, we can compute the location of any point on the robot.

Let's start with the wheel centers.

Configuration Space for a DDR

If the robot is in configuration $q=(x, y, \theta)$, the left and right wheel centers are located at:

$$
\left[\begin{array}{l}
x_{\text {left }} \\
y_{\text {left }}
\end{array}\right]=\left[\begin{array}{l}
x-\frac{L}{2} \sin \theta \\
y+\frac{L}{2} \cos \theta
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
x_{\text {right }} \\
y_{\text {right }}
\end{array}\right]=\left[\begin{array}{l}
x+\frac{L}{2} \sin \theta \\
y-\frac{L}{2} \cos \theta
\end{array}\right]
$$

Kinematics of DDRs

- We can generalize this to any point p on the DDR.
- Suppose the coordinates of p in the body frame are given by

$$
p^{b o d y}=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]
$$

- If the robot is in configuration $q=(x, y, \theta)$, the coordinates of p in the world frame are given by:

$$
p^{\text {world }}=\left[\begin{array}{l}
x+p_{x} \cos \theta-p_{y} \sin \theta \\
y+p_{x} \sin \theta+p_{y} \cos \theta
\end{array}\right]
$$

Soon, we will generalize this technique using homogeneous coordinate transformations... but not today.

Linear Velocity of the DDR

Differential Drive Robots are very different from robots with omni-wheels:

- The wheels roll without slipping - no sideways motion.
- The instantaneous velocity of the robot is always in the steering direction.
- The velocity perpendicular to the steering direction is always zero.

If the robot follows the curve $\gamma(s)$, the instantaneous velocity v is tangent to γ.

Velocity of the DDR

- Since the robot cannot move in the direction of the body-attached y-axis, its linear velocity, when expressed with respect to the body frame is:

$$
v^{\text {body,linear }}=\left[\begin{array}{c}
v_{x} \\
0
\end{array}\right]
$$

- The steering direction, expressed w.r.t. the world frame, is given by:

$$
\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

- Therefore, when the robot is in configuration $q(s)=(x, y, \theta)$, its linear velocity is expressed with respect to the world frame by:

$$
v^{\text {world,linear }}=\left[\begin{array}{l}
v_{x} \cos \theta \\
v_{x} \sin \theta
\end{array}\right]
$$

Angular Velocity of the DDR

- The orientation of the robot is given by the angle θ.
- Since this robot is able to rotate, θ can be considered as a function of time.
- We define the robot's angular velocity as

$$
\omega=\frac{d}{d t} \theta=\dot{\theta}
$$

- Note that the positive sense for ω is defined using the right-hand rule: point the thumb of your right hand in the direction of the world z-axis, and your fingers will curl in the positive θ direction.

Total Velocity of the DDR

- The velocity of the DDR includes both the linear and angular velocities.
- We stack these into a single vector to describe the robot's instantaneous velocity w.r.t. the body frame of the world frame:

$$
v^{\text {body }}=\left[\begin{array}{c}
v_{x} \\
0 \\
\dot{\theta}
\end{array}\right], \quad \quad v^{\text {world }}=\left[\begin{array}{c}
v_{x} \cos \theta \\
v_{x} \sin \theta \\
\dot{\theta}
\end{array}\right]
$$

$>$ Note that the z-axis of the body-attached frame is the same as the z-axis of the world frame, so that the angular velocity is given by $\dot{\theta}$ for both of these coordinate frames.

Wheel Actuation and DDR Velocity

- The two wheels of the DDR are independently actuated, and able to spin in both directions.
- Let ϕ_{R} and ϕ_{L} denote the instantaneous orientation of the right and left wheels (e.g., the angle from the world z-axis to some identifiable mark on the wheel.
- The angular speeds of the wheels are therefore given by $\dot{\phi}_{R}$ and $\dot{\phi}_{L}$.

As we saw with the omni-directional robot, the relationship between forward speed of the wheel and its angular speed is given by

$$
\frac{\mathrm{d}}{\mathrm{dt}} x=r \dot{\phi}
$$

and therefore, since the wheel rolls without slipping, and $v_{y}=0$, we have

$$
\dot{\phi}=\frac{v_{x}}{r}
$$

Wheel Actuation and DDR Velocity

When the two wheels turn with the same angular speed, $\dot{\phi}_{R}=\dot{\phi}_{L}$, the robot moves with pure translation.

In this case,

- $v_{\text {left }}=v_{\text {right }}$
- Both $v_{\text {left }}$ and $v_{\text {right }}$ are parallel to the steering direction.
- The robot's angular velocity is zero (i.e., $\omega=0$).
- The angular wheel speed is related to the robot's linear velocity by

$$
\dot{\phi}_{R}=\dot{\phi}_{L}=\frac{v_{x}}{r}
$$

Total DDR Velocity

When the two wheels turn with the opposite angular velocity, $\dot{\phi}_{R}=-\dot{\phi}_{L}$, the robot moves with pure rotation.

In this case,

- $v_{\text {left }}=-\dot{r} \dot{\phi}_{L}$ and $v_{\text {right }}=\dot{r} \phi_{R}$
- Both $v_{\text {left }}$ and $v_{\text {right }}$ are tangent to the circle centered at the origin of the body-attached frame $w /$ radius 0.5 L .
- The robot's angular velocity satisfies the eqn for circular motion:

$$
\frac{L}{2} \omega=v_{\text {right }}=r \dot{\phi}_{R}
$$

and

$$
\frac{L}{2} \omega=-v_{l e f t}=-r \dot{\phi}_{L}
$$

- Rearranging terms, we obtain:

$$
\dot{\phi}_{R}=\frac{L}{2} \frac{\omega}{r} \quad \text { and } \quad \dot{\phi}_{L}=-\frac{L}{2} \frac{\omega}{r}
$$

Wheel Actuation and DDR Velocity

All other velocities are linear combinations of these two cases, and therefore we can apply superposition.

- For pure translation we have:

$$
\dot{\phi}_{R}=\frac{v_{x}}{r} \quad \text { and } \quad \dot{\phi}_{L}=\frac{v_{x}}{r}
$$

- For pure rotation we have:

$$
\dot{\phi}_{R}=\frac{L}{2} \frac{\omega}{r} \quad \text { and } \quad \dot{\phi}_{L}=-\frac{L}{2} \frac{\omega}{r}
$$

- Combining (adding) the two equations for $\dot{\phi}_{R}$ and $\dot{\phi}_{L}$ we obtain:

$$
\dot{\phi}_{R}=\frac{L}{2} \frac{\omega}{r}+\frac{v_{x}}{r} \quad \text { and } \quad \dot{\phi}_{L}=-\frac{L}{2} \frac{\omega}{r}+\frac{v_{x}}{r}
$$

$>$ These two equations tell us how to choose $\dot{\phi}_{R}$ and $\dot{\phi}_{L}$ to achieve a desired velocity v, ω.

Wheel Actuation and DDR Velocity

All other velocities are linear combinations of these two cases, and therefore we can apply superposition.

- The equations

$$
\dot{\phi}_{R}=\frac{L}{2} \frac{\omega}{r}+\frac{v_{x}}{r} \quad \text { and } \quad \dot{\phi}_{L}=-\frac{L}{2} \frac{\omega}{r}+\frac{v_{x}}{r}
$$

are sometimes called inverse equations, since they solve the inverse problem: "what wheel speed (input) to I need to achieve a desired robot behavior (output)?"

- We can easily compute the forward mapping, from $\dot{\boldsymbol{\phi}}_{R}$ and $\dot{\phi}_{L}$ to \boldsymbol{v}, ω using simple algebra:

$$
\begin{aligned}
\dot{\phi}_{R}+\dot{\phi}_{L} & =2 \frac{v_{x}}{r} \Rightarrow v_{x}=\frac{r}{2}\left(\dot{\phi}_{R}+\dot{\phi}_{L}\right) \\
\dot{\phi}_{R}-\dot{\phi}_{L} & =\frac{L \omega}{r} \Rightarrow \omega=\frac{r}{L}\left(\dot{\phi}_{R}-\dot{\phi}_{L}\right)
\end{aligned}
$$

Wheel Actuation and DDR Velocity

We can express these equations relative to the bodyattached frame or the world frame:

$$
v^{\text {body }}=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
\omega
\end{array}\right]=\left[\begin{array}{l}
\frac{r}{2}\left(\dot{\phi}_{R}+\dot{\phi}_{L}\right) \\
\frac{r}{L}\left(\dot{\phi}_{R}-\dot{\phi}_{L}\right)
\end{array}\right]
$$

and

$$
v^{\text {world }}=\left[\begin{array}{c}
v_{x} \cos \theta \\
v_{x} \sin \theta \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
\frac{r}{2}\left(\dot{\phi}_{R}+\dot{\phi}_{L}\right) \cos \theta \\
\frac{r}{2}\left(\dot{\phi}_{R}+\dot{\phi}_{L}\right) \sin \theta \\
\frac{r}{L}\left(\dot{\phi}_{R}-\dot{\phi}_{L}\right)
\end{array}\right]
$$

