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Lecture 14: 
A Logistics Robot:               

Perception



Logistics Robots



Perception

In this chapter, the role of perception is to solve the 
localization problem, i.e., to determine an estimate of 
𝑥!, the robot’s state at time 𝑡.

• Mathematically, the problem is to estimate the state 
𝑥!, given the action history 𝑢"…𝑢# and sensing 
history 𝑧"…𝑧#

𝐵𝑒𝑙 𝑥! = 𝑃(𝑥!|𝑢", 𝑧", 𝑢$ …𝑧!%", 𝑢!%", 𝑧!)

• Computationally, this is a difficult problem.
• We’ll see two approaches:
• Particle Filtering
• Markov Localization

• The Bayes filter is the workhorse in these.



The Bayes Filter

The Bayes filter is the culmination of all the work 
we’ve done in applying probability theory to the 
representation of uncertainty in state, actions, and 
sensing.

• Prior: probabilistic description of uncertainty in the 
state (before acting or sensing at time 𝑡).
• Motion model: conditional probability that describes 

uncertainty in the actions.
• Sensor model: conditional probability model that 

describes uncertainty in the sensor measurements.

Ø The output of the Bayes filter at time 𝑡 is 𝐵𝑒𝑙 𝑥! .



The Bayes Filter

• Two phases: a. Prediction Phase (uncertainty grows)
b. Measurement Phase (uncertainty reduction)

𝐵𝑒𝑙(𝑥!"#) 𝑃(𝑥!|𝑢!"#, 𝑥!"#) 𝑃(𝑥!$#|𝑢! , 𝑥!)
𝐵𝑒𝑙(𝑥!)



Bayes Filters: Framework

• Let 𝑥 be the state of the robot (e.g., its location)
• Given:
• Stream of observations z and action data u: {𝑢", 𝑧"… , 𝑢!%", 𝑧!}
• Sensor model P(z|x) -> likelihood function ℒ(x;z) when z is given.
• Motion model 𝑃(𝑥!|𝑢!%", 𝑥!%").
• Prior probability of the system state P(x).

• Wanted: 
• Estimate of the state X of a dynamical system.
• The posterior of the state is also, as before, sometimes called the Belief:

𝐵𝑒𝑙(𝑥!) = 𝑃(𝑥!|𝑢", 𝑧" … , 𝑢!%", 𝑧!)



• We can put all of this into our nice Bayes net formalism, for modeling purposes.
• The robot’s state at time 𝑡 is stochastically dependent on its state at time 𝑡 − 1 and the 

control input 𝑢!.  The measurement 𝑧! depends stochastically on the state at time 𝑡.  
• Gray elements are observable and white are hidden.

(This model is known as a hidden Markov model (HMM) or dynamic Bayesian network (DBN).  



Markov Assumption

Underlying Assumptions
• Static world
• Independent noise

𝑝 𝑧! 𝑥":! , 𝑧":!$", 𝑢":! = 𝑝(𝑧!|𝑥!)

𝑝 𝑥! 𝑥":!$", 𝑧":!$", 𝑢":! = 𝑝(𝑥!|𝑥!$", 𝑢!)

"The future is independent of 
the past given the present."



𝑝(𝑥|𝑧)

𝑃 𝑥|𝑧 ∝ ℒ(𝑥; 𝑧)𝑃(𝑥) = likelihood ⋅ prior

Posterior probability of x given z

ℒ(𝑥; 𝑧)

𝑝(𝑥) Prior probability distribution on state x

Likelihood function of state x given measurement z

à

à

à

Bayes Rule

𝒙 is robot pose and 𝒛 is sensor data



∝ ℒ(𝑥!; 𝑧!)D𝑃(𝑥!|𝑢!%", 𝑥!%") 𝐵𝑒𝑙(𝑥!%") 𝑑𝑥!%"

Bayes Filters

= 𝜂 𝑃(𝑧!|𝑥! , 𝑢#, 𝑧#, … , 𝑢!"#) 𝑃(𝑥!|𝑢#, 𝑧%, … , 𝑢!"#)Bayes

z = observation
u = action
x = state

𝐵𝑒𝑙(𝑥!) = 𝑃(𝑥!|𝑢#, 𝑧# … , 𝑢!"#, 𝑧!)

Markov/Likelihood ∝ ℒ(𝑥!; 𝑧!) 𝑃(𝑥!|𝑢#, 𝑧#, … , 𝑢!"#)

Markov ∝ ℒ(𝑥!; 𝑧!)(𝑃(𝑥!|𝑢!"#, 𝑥!"#) 𝑃(𝑥!"#|𝑢#, 𝑧#, … , 𝑢!"#) 𝑑𝑥!"#

∝ ℒ(𝑥!; 𝑧!)7𝑃(𝑥!|𝑢#, 𝑧#, … , 𝑢!"#, 𝑥!"#) 𝑃(𝑥!"#|𝑢#, 𝑧#, … , 𝑢!"#) 𝑑𝑥!"#Total prob.



Bayes Filters for Robot Localization

Let’s see how it works using a simple 
example:

• The robot moves from left to right.
• From time to time, it takes a sensor 

reading.

How is the state estimate updated??



Initial Guess: Could be 
anywhere…

Take a measurement: we’re 
probably in front of a door…

Execute an action – move to the 
right by about a meter… 
probability mass “spreads out”

Take another measurement. It 
seems we’re in front of a door 
again (red). Given what we 
believed before about position, 
the most likely place now is the 
second door.

Execute an action – move to the 
right by about a meter… 
probability mass “spreads out”



Bayes Filters

z = observation
u = action
x = state

𝐵𝑒𝑙 𝑥! ∝ ℒ(𝑥!; 𝑧!)∫ 𝑃 𝑥! 𝑢!$", 𝑥!$")𝐵𝑒𝑙(𝑥!$")𝑑𝑥!$"

Belief that robot 
is in state 𝑋 = 𝑥!
at time step 𝑡

How likely is the 
state 𝑥! given 
that I saw the 
observation 𝑧!

If I was in state 𝑥!"#and I 
executed action 𝑢!"#what is 
the probability that I arrive 
to state 𝑥!

Weight this 
probability by the 
belief that I was 
actually in state 𝑥!"#

Integrate over all possible previous states, 𝑥!"#



Markov 
Localization

Markov localization approximates the state space using 
a discrete grid.
At time 𝑡, the value in the grid cell 𝑥;< represent the 
probability that 𝑥! = 𝑥;<.

At time 𝑡 + 1, every grid cell updates its probability 
value based on:
• Prediction from the motion model
• Observation from sensors

This is a grid-cell-centric view of probability updating.
Instead of keeping track of moving probability mass 
(e.g., particles), each grid cell pays attention to the 
probability mass that arrives to its specific location.



Markov Localization
• Perception (or sensing) model:  represents likelihood that robot senses 

a particular reading at a particular position.

𝑃 𝑥 ∝ 𝐿(𝑥; 𝑧)𝑃 𝑥

• Action (or motion) model:  represents movements of robot

𝑃 𝑥 =.𝑃 𝑥 𝑢, 𝑥! 𝑃(𝑥!)
Probability that action 𝑢 from position 𝑥′ moves the robot to position 𝑥, 
weighted by the probability that the robot is in position 𝑥′, summed over all 
possible 𝑥′ where the robot might have been.

Likelihood of position x given the measurement z,
times the prior probability the robot is in position x

ØPerform these computations at every grid cell, at each time 𝒕.



Markov Localization: a 1D Example

Prediction 
P(S)

Likelihood
L(S;o)

Posterior
P(S|o)

Each bin in the histogram is 
updated in each step.



Remember: propagation without sensor
• Uncertainty grows without bounds:



Recall: Likelihood images for the Proximity Sensor
• We can plot the likelihood for for each possible value of 𝑧".

ℒ 𝑥&; 𝑧& = 𝑂𝐹𝐹 = @0 𝑑 𝑥& ≤ 𝑑'
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒ℒ 𝑥&; 𝑧& = 𝑂𝑁 = @1 𝑑 𝑥& ≤ 𝑑'

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ø The likelihood is a function of 𝒙𝒌.  It is not a probability distribution! 
Ø The specific form of the likelihood depends on which value of 𝒛𝒌 was observed.



Markov Localization
• The robot moves through the world, and each cell in the grid updates its probability 

estimate after each motion model step, by multiplying with the likelihood image.



Implementing Markov Localization

• In practice, many grid cells have very small probability values.
• We can speed computation by ignoring these cells, with little risk of going astray in our 

state estimation.
• If we care about the robot’s orientation, then we need to add a 𝜃 dimension to our grid.



The Particle Filter

Particle filters represent a probability density function 
as a set of weighted samples.
The weighted samples are 
1. Pushed through the motion model (including 

uncertainty)
2. Reweighted based on sensor measurements (using 

the sensor model)
3. Resampled using the new weights to define  a 

probability distribution on the sample set.

• The approach is easy to implement, and has low 
computational overhead.
• Complexity does not grow exponentially with 

dimension of the state space.



Two	localization	problems

• “Global” localization 
• Figure out where the robot is, but we don’t know where the robot started
• Sometimes called the “kidnapped robot problem”

• “Position tracking” 
• Figure out where the robot is, given that we know where the robot started

Ø To solve these problems at time 𝒕, we estimate 

𝑩𝒆𝒍(𝒙𝒕) = 𝑷(𝒙𝒕|𝒖𝟏, 𝒛𝟏, 𝒖𝟐 … , 𝒛𝒕)

ØThe hard part: it’s not feasible to exactly calculate or represent 𝑩𝒆𝒍(𝒙𝒕).



Sampling to Approximate Densities

• Densities can become arbitrarily complex, even when noise models are 
Gaussian.
• One issue is nonlinear measurement and noise models.
• A second issue is the curse of dimensionality (for grid-based methods).

• One way out: sampling!



Probability of Robot Location

P(Robot Location)

X

Y

State space = 2D, infinite #states



Sampling as Representation

P(Robot Location)

X

Y



Particle	Filter

• Represent p(x) by set of N weighted, random samples, called particles, of 
the form:< (𝑥;, 𝑦;), 𝑤; >

(𝑥;, 𝑦;) represents robot’s pose
𝑤; represents a weight, where ∑𝑤; = 1

• A.K.A. Monte Carlo Localization (MCL)
• Refers to techniques that are stochastic (random / non-deterministic)
• Used in many modeling and simulation approaches



Sampling Advantages
• Arbitrary densities
• Memory = O(#samples)
• Only in “Typical Set”
• Great visualization tool !

• minus: Approximate



Particle Filter Localization (using sonar)

http://www.cs.washington.edu/ai/Mobile_Robotics//mcl/animations/global-floor-start.gif



Start

Motion	Model	for	a	Car-Like	Robot



Sensor	Model

Laser sensor Sonar sensor



Particles

• Each	particle	is	a	guess	about	where	the	robot	might	be

𝑥
𝑦



1. Prediction Phase

u

Motion Model

P(xt|   ,u)



2. Measurement Phase

Sensor Model

P(Z|xt)



3. Resampling Step

O(N)



35

Uniform distribution



36

Sense



37

Before resampling



38

After resampling



39

Sense 



40

Before resampling 



41

After resampling



42

Move



43

Sense 



44

Before resampling



45

After resampling



46

Move 



47

Sense



48

Before resampling



49

After resampling



50

Move 



Motion	Model

•When the command 𝑢!%" is executed, each particle is updated to 
approximate the robot’s movement by sampling from 𝑝(𝑥!|𝑥!%", 𝑢!%").
• At this stage, typically all particles have equal weight (𝑤 = "

Q).

𝑛 particles 𝑛 particles



Sensing	Model

• Re-weight sample set, according to the likelihood that robot’s current sensors 
match what would be seen at a given location

• Let < 𝑥,𝑤 > be a sample.
• Then, w ¬ 𝜂𝑃 𝑧 𝑥

• z is the sensor measurement; 
• 𝜂 a normalization constant to enforce the sum of 𝑤’s equaling 1



Incorporating	Sensing



Incorporating	Sensing

Difference between the 
actual measurement

and the 
estimated measurement

Importance weight



Incorporating	Sensing



Resampling

• After	applying	the	motion	update	and	sensing	update,	we	end	up	with	new	
positions	and	weights	for	particles

•We	want	to	eliminate	particles	that	have	very	low	weight	(unlikely	to	
represent	robot	position)	and	generate	more	particles	in	the	more	likely	areas	
of	the	state	space.

• Resample,	according	to	latest	weights
• Add	a	few	uniformly	distributed,	random	samples

• Very	helpful	in	case	robot	completely	loses	track	of	its	location



Resampling

𝑛 original 
particles

Importance Weight
𝑤(𝑥!)

0.2

0.6

0.2

0.8

0.8

0.2

S= 2.8

𝜂 =
1
2.8



Resampling

𝑛 original 
particles

Importance Weight
𝑤(𝑥!)

Normalized Probability
𝑝(𝑥!)

0.2 0.07

0.6 0.21

0.2 0.07

0.8 0.29

0.8 0.29

0.2 0.07

S= 2.8



Resampling

Sample 𝑛 new particles from the 
previous set.  
• Each particle is chosen with 

probability 𝑝 𝑥) , with 
replacement.  Add a little random 
noise to each resampled particle 
to avoid identical duplicates.

𝑛 original 
particles

Importance Weight
𝑤(𝑥!)

Normalized Probability
𝑝(𝑥!)

0.2 0.07

0.6 0.21

0.2 0.07

0.8 0.29

0.8 0.29

0.2 0.07

S= 2.8



Resampling

Sample 𝑛 new particles from the 
previous set.  
• Each particle is chosen with 

probability 𝑝 𝑥) , with 
replacement.

Is it possible that one of the particles is never chosen?
Yes!

Is it possible that one of the particles is chosen more than once?
Yes!

𝑛 original 
particles

Importance Weight
𝑤(𝑥!)

Normalized Probability
𝑝(𝑥!)

0.2 0.07

0.6 0.21

0.2 0.07

0.8 0.29

0.8 0.29

0.2 0.07

S= 2.8



Resampling

Sample 𝑛 new particles from the 
previous set.  
• Each particle is chosen with 

probability 𝑝 𝑥) , with 
replacement.

What is the probability that this particle is not 
chosen during the resampling of the six new 
particles?

0.71 * = 0.13

𝑛 original 
particles

Importance Weight
𝑤(𝑥!)

Normalized Probability
𝑝(𝑥!)

0.2 0.07

0.6 0.21

0.2 0.07

0.8 0.29

0.8 0.29

0.2 0.07

S= 2.8



Resampling

Sample 𝑛 new particles from the 
previous set.  
• Each particle is chosen with 

probability 𝑝 𝑥) , with 
replacement.

What is the probability that this particle is not 
chosen during the resampling of the six new 
particles?

0.93 * = .65

𝑛 original 
particles

Importance Weight
𝑤(𝑥!)

Normalized Probability
𝑝(𝑥!)

0.2 0.07

0.6 0.21

0.2 0.07

0.8 0.29

0.8 0.29

0.2 0.07

S= 2.8



1. Algorithm particle_filter(𝑋#$%, 𝑢#$%, 𝑧#):
2. 𝑋# = ∅, 𝜂 = 0

Input: 
• 𝑢#$%is the action that was executed at time 𝑡 − 1
• 𝑋#$% = < 𝑥#$%

& , 𝑤& > &'%…)
is the set of weighted particles at time 𝑡 − 1

• 𝑧# is the sensor measurement at time 𝑡 − 1

Output: 
• 𝑋# = < 𝑥#

&, 𝑤& > &'%…)
is a set of weighted particles at time 𝑡

Particle	Filter	Algorithm



1. Algorithm particle_filter(𝑋#$%, 𝑢#$%, 𝑧#):
2. 𝑋# = ∅, 𝜂 = 0

3. For 𝒋 = 𝟏…𝑵 Generate new samples

4. Sample index 𝑗 from discrete index set {1, …𝑁} based on 𝑤#$%

Sample 𝑥#
& from 𝑝 𝑥#

& , 𝑥#$%
& , 𝑢#$%

NOTE: 𝑗 indicates a randomly chosen particle based on weights at time t − 1
𝑥#
& is determined using only the motion model for specific

action, 𝑢#$% applied in state 𝑥#$%
&

Particle	Filter	Algorithm



1. Algorithm particle_filter(𝑋#$%, 𝑢#$%, 𝑧#):
2. 𝑋# = ∅, 𝜂 = 0

3. For 𝒋 = 𝟏…𝑵 Generate new samples

4. Sample index 𝑗 from discrete index set {1, …𝑁} based on 𝑤#$%

Sample 𝑥#
& from 𝑝 𝑥#

& , 𝑥#$%
& , 𝑢#$%

5. 𝑤#
& = 𝑝(𝑧#|𝑥#

&) Compute importance weight

6. 𝜂 = 𝜂 + 𝑤#
& Update normalization factor

7. 𝑋# = 𝑋# ∪ {< 𝑥#
&, 𝑤#

& >} Add to set of new particles

Particle	Filter	Algorithm



1. Algorithm particle_filter(𝑋#$%, 𝑢#$%, 𝑧#):
2. 𝑋# = ∅, 𝜂 = 0

3. For 𝒋 = 𝟏…𝑵 Generate new samples

4. Sample index 𝑗 from discrete index set {1, …𝑁} based on 𝑤#$%

Sample 𝑥#
& from 𝑝 𝑥#

& , 𝑥#$%
& , 𝑢#$%

5. 𝑤#
& = 𝑝(𝑧#|𝑥#

&) Compute importance weight

6. 𝜂 = 𝜂 + 𝑤#
& Update normalization factor

7. 𝑋# = 𝑋# ∪ {< 𝑥#
&, 𝑤#

& >} Add to set of new particles 

8. For 𝒋 = 𝟏…𝑵

9. 𝑤#
& = 𝑤#

&/𝜂 Normalize weights

Particle	Filter	Algorithm


