Lecture 14:
A Logistics Robot: Perception
Logistics Robots
In this chapter, the role of perception is to solve the *localization* problem, i.e., to determine an estimate of x_t, the robot’s state at time t.

- Mathematically, the problem is to estimate the state x_t, given the action history $u_1 \ldots u_n$ and sensing history $z_1 \ldots z_n$

\[
Bel(x_t) = P(x_t | u_1, z_1, u_2 \ldots z_{t-1}, u_{t-1}, z_t)
\]

- Computationally, this is a difficult problem.
- We’ll see two approaches:
 - Particle Filtering
 - Markov Localization
- The Bayes filter is the workhorse in these.
The Bayes filter is the culmination of all the work we’ve done in applying probability theory to the representation of uncertainty in state, actions, and sensing.

- **Prior**: probabilistic description of uncertainty in the state (before acting or sensing at time t).
- **Motion model**: conditional probability that describes uncertainty in the actions.
- **Sensor model**: conditional probability model that describes uncertainty in the sensor measurements.

- The output of the Bayes filter at time t is $Bel(x_t)$.
The Bayes Filter

• Two phases:
 a. Prediction Phase (uncertainty grows)
 b. Measurement Phase (uncertainty reduction)
Bayes Filters: Framework

• Let x be the state of the robot (e.g., its location)

• **Given:**
 • Stream of observations z and action data u: $\{u_1, z_1 ..., u_{t-1}, z_t\}$
 • Sensor model $P(z|x)$ -> **likelihood function** $L(x;z)$ when z is given.
 • Motion model $P(x_t|u_{t-1}, x_{t-1})$.
 • Prior probability of the system state $P(x)$.

• **Wanted:**
 • Estimate of the state X of a dynamical system.
 • The posterior of the state is also, as before, sometimes called the **Belief**:

\[
Bel(x_t) = P(x_t|u_1, z_1 ..., u_{t-1}, z_t)
\]
• We can put all of this into our nice Bayes net formalism, for *modeling* purposes.
• The robot’s state at time t is stochastically dependent on its state at time $t-1$ and the control input u_t. The measurement z_t depends stochastically on the state at time t.
• Gray elements are observable and white are hidden.

(This model is known as a hidden Markov model (HMM) or dynamic Bayesian network (DBN).)
Markov Assumption

Underlying Assumptions
• Static world
• Independent noise

\[
p(z_t | x_{1:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)
\]

\[
p(x_t | x_{1:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t)
\]

"The future is independent of the past given the present."
Bayes Rule

\[P(x|z) \propto \mathcal{L}(x; z)P(x) = \text{likelihood} \cdot \text{prior} \]

\(x \) is robot pose and \(z \) is sensor data

\(p(x|z) \) → *Posterior* probability of \(x \) given \(z \)

\(\mathcal{L}(x; z) \) → *Likelihood* function of state \(x \) given measurement \(z \)

\(p(x) \) → *Prior* probability distribution on state \(x \)
Bayes Filters

\[
Bel(x_t) = P(x_t|u_1, z_1, ..., u_{t-1}, z_t)
\]

Bayes \[= \eta \ P(z_t|x_t, u_1, z_1, ..., u_{t-1}) \ P(x_t|u_1, z_2, ..., u_{t-1})\]

Markov/Likelihood \[\propto L(x_t; z_t) \ P(x_t|u_1, z_1, ..., u_{t-1})\]

Total prob. \[\propto L(x_t; z_t) \int P(x_t|u_1, z_1, ..., u_{t-1}, x_{t-1}) \ P(x_{t-1}|u_1, z_1, ..., u_{t-1}) \ dx_{t-1}\]

Markov \[\propto L(x_t; z_t) \int P(x_t|u_{t-1}, x_{t-1}) \ P(x_{t-1}|u_1, z_1, ..., u_{t-1}) \ dx_{t-1}\]

\[\propto L(x_t; z_t) \int P(x_t|u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}\]

\[z = \text{observation} \quad u = \text{action} \quad x = \text{state}\]
Let’s see how it works using a simple example:

- The robot moves from left to right.
- From time to time, it takes a sensor reading.

How is the state estimate updated??

Bayes Filters for Robot Localization
Initial Guess: Could be anywhere...

Take a measurement: we’re probably in front of a door...

Execute an action – move to the right by about a meter... probability mass “spreads out”

Take another measurement. It seems we’re in front of a door again (red). Given what we believed before about position, the most likely place now is the second door.

Execute an action – move to the right by about a meter... probability mass “spreads out”
Bayes Filters

Belief that robot is in state $X = x_t$ at time step t

How likely is the state x_t given that I saw the observation z_t?

If I was in state x_{t-1} and I executed action u_{t-1} what is the probability that I arrive to state x_t?

Weight this probability by the belief that I was actually in state x_{t-1}.

$Bel(x_t) \propto \mathcal{L}(x_t; z_t) \int P(x_t | u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$

Integrate over all possible previous states, x_{t-1}.

$z = \text{observation}$

$u = \text{action}$

$x = \text{state}$
Markov localization approximates the state space using a discrete grid.

At time t, the value in the grid cell x^{ij} represent the probability that $x_t = x^{ij}$.

At time $t + 1$, every grid cell updates its probability value based on:

- Prediction from the motion model
- Observation from sensors

This is a grid-cell-centric view of probability updating. Instead of keeping track of moving probability mass (e.g., particles), each grid cell pays attention to the probability mass that arrives to its specific location.
Markov Localization

• Perception (or sensing) model: represents likelihood that robot senses a particular reading at a particular position.

\[P(x) \propto L(x; z)P(x) \]

Likelihood of position \(x \) given the measurement \(z \), times the prior probability the robot is in position \(x \).

• Action (or motion) model: represents movements of robot

\[P(x) = \sum P(x|u, x')P(x') \]

Probability that action \(u \) from position \(x' \) moves the robot to position \(x \), weighted by the probability that the robot is in position \(x' \), summed over all possible \(x' \) where the robot might have been.

➢ *Perform these computations at every grid cell, at each time \(t \).*
Markov Localization: a 1D Example

Each bin in the histogram is updated in each step.
Remember: propagation *without* sensor

- Uncertainty grows without bounds:
Recall: Likelihood images for the Proximity Sensor

- We can plot the likelihood for each possible value of z_k.

\[
L(x_k; z_k = ON) = \begin{cases}
1 & d(x_k) \leq d_0 \\
0 & \text{otherwise}
\end{cases}
\]

\[
L(x_k; z_k = OFF) = \begin{cases}
0 & d(x_k) \leq d_0 \\
1 & \text{otherwise}
\end{cases}
\]

- The likelihood is a function of x_k. It is not a probability distribution!
- The specific form of the likelihood depends on which value of z_k was observed.
Markov Localization

- The robot moves through the world, and each cell in the grid updates its probability estimate after each motion model step, by multiplying with the likelihood image.
Implementing Markov Localization

\[P(X_k|Z^{k-1}, U^k) = \sum_{x_{k-1}} P(X_k|x_{k-1}, u_{k-1})P(x_{k-1}|Z^{k-1}, U^{k-1}). \]

\[P(X_k|Z^k, U^k) \propto L(X_k; z_k) P(X_k|Z^{k-1}, U^k). \]

- In practice, many grid cells have very small probability values.
- We can speed computation by ignoring these cells, with little risk of going astray in our state estimation.
- If we care about the robot’s orientation, then we need to add a \(\theta \) dimension to our grid.
Particle filters represent a probability density function as a set of weighted samples.

The weighted samples are

1. Pushed through the motion model (including uncertainty)
2. Reweighted based on sensor measurements (using the sensor model)
3. Resampled using the new weights to define a probability distribution on the sample set.

- The approach is easy to implement, and has low computational overhead.
- Complexity does not grow exponentially with dimension of the state space.
Two localization problems

• “Global” localization
 • Figure out where the robot is, but we don’t know where the robot started
 • Sometimes called the “kidnapped robot problem”

• “Position tracking”
 • Figure out where the robot is, given that we know where the robot started

➢ To solve these problems at time t, we estimate

$$Bel(x_t) = P(x_t|u_1, z_1, u_2 \ldots, z_t)$$

➢ The hard part: it’s not feasible to exactly calculate or represent $Bel(x_t)$.

Sampling to Approximate Densities

• Densities can become arbitrarily complex, even when noise models are Gaussian.
• One issue is nonlinear measurement and noise models.
• A second issue is the curse of dimensionality (for grid-based methods).

• One way out: **sampling!**
Probability of Robot Location

State space = 2D, infinite #states
Sampling as Representation

$\{X_{t-1}^{(s)}\} \sim P(X_{t-1} | Z^{t-1})$
Particle Filter

• Represent $p(x)$ by set of N weighted, random samples, called *particles*, of the form: $< (x_i, y_i), w_i >$

 (x_i, y_i) represents robot’s pose
 w_i represents a weight, where $\sum w_i = 1$

• A.K.A. Monte Carlo Localization (MCL)
 • Refers to techniques that are stochastic (random / non-deterministic)
 • Used in many modeling and simulation approaches
Sampling Advantages

• Arbitrary densities
• Memory = $O(#\text{samples})$
• Only in “Typical Set”
• Great visualization tool!

• minus: Approximate
Particle Filter Localization (using sonar)

Motion Model for a Car-Like Robot
Sensor Model

Laser sensor

Sonar sensor
Particles

• Each particle is a guess about where the robot might be
1. Prediction Phase

\[P(x_t|\bullet, u) \]

Motion Model
2. Measurement Phase

\[P(Z|x_t) \]
3. Resampling Step

\[O(N) \]
Uniform distribution
After resampling
Sense
After resampling
Before resampling
After resampling
Move
Before resampling
After resampling
Move
Motion Model

• When the command u_{t-1} is executed, each particle is updated to approximate the robot’s movement by sampling from $p(x_t|x_{t-1}, u_{t-1})$.
• At this stage, typically all particles have equal weight ($w = \frac{1}{N}$).
Sensing Model

• **Re-weight sample set**, according to the likelihood that robot’s current sensors match what would be seen at a given location

 • Let \(< x, w > \) be a sample.
 • Then, \(w \leftarrow \eta P(z|x) \)

 • \(z \) is the sensor measurement;
 • \(\eta \) a normalization constant to enforce the sum of \(w \)’s equaling 1
Incorporating Sensing
Incorporating Sensing

Difference between the actual measurement and the estimated measurement

Importance weight
Incorporating Sensing
Resampling

• After applying the motion update and sensing update, we end up with new positions and weights for particles

• We want to eliminate particles that have very low weight (unlikely to represent robot position) and generate more particles in the more likely areas of the state space.

• **Resample**, according to latest weights
• Add a few uniformly distributed, **random samples**
 • Very helpful in case robot completely loses track of its location
Resampling

\[
\begin{array}{c|c}
\text{n original particles} & \text{Importance Weight} w(x_i) \\
\hline
0.2 & \\
0.6 & \\
0.2 & \\
0.8 & \\
0.8 & \\
0.2 & \\
\hline
\end{array}
\]

\[\sum = 2.8\]

\[\eta = \frac{1}{2.8}\]
Resampling

<table>
<thead>
<tr>
<th>(n) original particles</th>
<th>Importance Weight (w(x_i))</th>
<th>Normalized Probability (p(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

\[
\sum = 2.8
\]
Resampling

Sample n new particles from the previous set.
- Each particle is chosen with probability $p(x_i)$, with replacement. Add a little random noise to each resampled particle to avoid identical duplicates.
Resampling

<table>
<thead>
<tr>
<th>n original particles</th>
<th>Importance Weight $w(x_i)$</th>
<th>Normalized Probability $p(x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

$\sum = 2.8$

Is it possible that one of the particles is never chosen? Yes!
Is it possible that one of the particles is chosen more than once? Yes!

Sample n new particles from the previous set.

- Each particle is chosen with probability $p(x_i)$, with replacement.
Resampling

What is the probability that this particle is not chosen during the resampling of the six new particles?

\[(0.71)^6 = 0.13\]

Table

<table>
<thead>
<tr>
<th>(n) original particles</th>
<th>Importance Weight (w(x_i))</th>
<th>Normalized Probability (p(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

\[\sum = 2.8\]

Sample \(n\) new particles from the previous set.
- Each particle is chosen with probability \(p(x_i)\), with replacement.
Resampling

What is the probability that this particle is not chosen during the resampling of the six new particles?

\[(0.93)^6 = 0.65\]

Sample \(n\) new particles from the previous set.
- Each particle is chosen with probability \(p(x_i)\), with replacement.
Particle Filter Algorithm

1. Algorithm particle_filter(X_{t-1}, u_{t-1}, z_t):

2. $X_t = \emptyset, \eta = 0$

Input:
• u_{t-1} is the action that was executed at time $t - 1$
• $X_{t-1} = \{< x_{t-1}^j, w_j >\}_{j=1...N}$ is the set of weighted particles at time $t - 1$
• z_t is the sensor measurement at time $t - 1$

Output:
• $X_t = \{< x_t^j, w_j >\}_{j=1...N}$ is a set of weighted particles at time t
Particle Filter Algorithm

1. Algorithm particle_filter(X_{t-1}, u_{t-1}, z_t):
2. $X_t = \emptyset, \eta = 0$
3. For $j = 1 \ldots N$
 Generate new samples
4. Sample index j from discrete index set \{1, ... N\} based on w_{t-1}
 Sample x_t^j from $p(x_t^j | x_{t-1}^j, u_{t-1})$

NOTE: j indicates a randomly chosen particle based on weights at time $t - 1$
x_t^j is determined using only the motion model for specific action, u_{t-1} applied in state x_{t-1}^j
Particle Filter Algorithm

1. Algorithm `particle_filter(X_{t-1}, u_{t-1}, z_t)`:
2. $X_t = \emptyset, \eta = 0$
3. **For** $j = 1 \ldots N$ **Generate new samples**
4. Sample index j from discrete index set \{1, \ldots, N\} based on w_{t-1}
 Sample x_t^j from $p(x_t^j | x_{t-1}^j, u_{t-1})$
5. $w_t^j = p(z_t | x_t^j)$ **Compute importance weight**
6. $\eta = \eta + w_t^j$ **Update normalization factor**
7. $X_t = X_t \cup \{< x_t^j, w_t^j >\}$ **Add to set of new particles**
Particle Filter Algorithm

1. Algorithm \texttt{particle_filter}(X_{t-1}, u_{t-1}, z_t):
2. \(X_t = \emptyset, \eta = 0 \)
3. \textbf{For} \(j = 1 \ldots N \) \textit{Generate new samples}
4. \text{Sample index} \(j \) \text{from discrete index set} \{1, \ldots, N\} \text{based on} \ w_{t-1}
5. \text{Sample} \ x_t^j \text{from} \ p(x_t^j | x_{t-1}^j, u_{t-1}) \ \textit{Compute importance weight}
6. \(\eta = \eta + w_t^j \) \ \textit{Update normalization factor}
7. \(X_t = X_t \cup \{<x_t^j, w_t^j>\} \) \ \textit{Add to set of new particles}
8. \textbf{For} \(j = 1 \ldots N \)
9. \(w_t^j = w_t^j / \eta \) \ \textit{Normalize weights}