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Lecture 13: 
A Logistics Robot:               

Sensing



Logistics Robots



Sensing

So far, we’ve seen pretty simple sensor models:
• Discrete measurements (conductivity, light)
• Univariate Gaussians (weight/scale)

In this chapter, we’ll see more realistic sensor models:
• Proximity (object detection, binary)
• Range (distance to a beacon, Gaussian)
• Pseudo-GPS (2D coordinates, bi-variate Gaussian)

For Perception, we’ll require more sophisticated 
computational tools that exploit efficient and effective 
approximation schemes.



Warehouse Environment
• Sensors measure various features of the environment.

• Geometric aspects of the environment (e.g., location of obstacles)
• Artifacts placed in the environment (e.g., QR Code, RFID transmitters, GPS)
• Visual features in the environment.

Environment:
• Warehouse is an enclosed 100x50m space
• Four shelving units 
• Eight beacons (for range sensor)

Sensors:
• Proximity sensor detects walls and shelves
• Range sensor measures distance to the 

nearest beacon
• Pseudo-GPS sensor gives 2D coordinates of 

the robot in the warehouse.



An Ideal Proximity Sensor
• Binary sensor that detects obstacles.
• Sensor returns measurement 𝑧! ∈ 𝑂𝑁,𝑂𝐹𝐹
• Denote by 𝑋"#$ the obstacle region (includes shelves and walls)
• Distance to nearest obstacle is defined by

𝑑 𝑥 = min
%!∈'"#$

𝑥 − 𝑥(
)
*

• If 𝑑 𝑥! ≤ 𝑑+ (for some predetermined distance 𝑑+), the sensor triggers:
𝑧! = 𝑂𝑁

• If 𝑑 𝑥! > 𝑑+, 𝑧! = 𝑂𝐹𝐹.



Ideal Proximity Sensor

In this example, 
• 𝑧) = 𝑂𝑁
• 𝑧* = 𝑂𝐹𝐹

𝑑!

𝑑!

𝑥"

𝑥#

• This figure illustrates how the proximity sensor works for one of the shelves.
• Similar blue regions exist for all four shelves and the four walls.



A Noisy Proximity Sensor
• Real proximity sensors have variations in their ability to detect obstacles.
• Often the ability to detect obstacles degrades as the distance to the obstacle increases.
• One possible measurement model:

𝑃 𝑧! = 𝑂𝑁 𝑥!) = 3 1 𝑑 𝑥! ≤ 𝑑+
𝑒,-(/ %' ,/() 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• This sensor gives a false positive with probability that exponentially decreases to zero as 
the robot moves away from an obstacle.
• Since 𝑃 𝑍! 𝑥!) is a conditional probability, it follows that

𝑃 𝑧! = 𝑂𝐹𝐹 𝑥!) = 1 − 𝑃 𝑧! = 𝑂𝑁 𝑥!)



Likelihood for the Ideal Proximity Sensor
• We can model an ideal proximity sensor using the measurement model:

𝑃 𝑧! = 𝑂𝑁 𝑥!) = 31 𝑑 𝑥! ≤ 𝑑+
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The likelihood for this sensor is given by:

ℒ 𝑥!; 𝑧! = 𝑂𝑁 = 31 𝑑 𝑥! ≤ 𝑑+
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℒ 𝑥!; 𝑧! = 𝑂𝐹𝐹 = 30 𝑑 𝑥! ≤ 𝑑+
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Likelihood for the Ideal Proximity Sensor
• We can plot the likelihood for for each possible value of 𝑧!.

ℒ 𝑥!; 𝑧! = 𝑂𝐹𝐹 = 90 𝑑 𝑥! ≤ 𝑑"
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒ℒ 𝑥!; 𝑧! = 𝑂𝑁 = 91 𝑑 𝑥! ≤ 𝑑"

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ø The likelihood is a function of 𝒙𝒌.  It is not a probability distribution! 
Ø The specific form of the likelihood depends on which value of 𝒛𝒌 was observed.



An Ideal Range Sensor
• Eight beacons have been placed in the warehouse, at locations 𝑏+, … , 𝑏H.
• The range sensor is a nonlinear sensor that returns the distance to the beacons:

ℎ 𝑥!; 𝑏I = 𝑥! − 𝑏I = 𝑥! − 𝑏I J 𝑥! − 𝑏I

𝑥$ • This sensor can be realized using RFID 
technology.

• Of course the beacon range is finite, so when 
𝑥! − 𝑏$ > 𝑑%&' for all 𝑖, we set 

ℎ 𝑥!; 𝑏$ = 𝐢𝐧𝐟

beacon



A Noisy Range Sensor
• We often assume that sensor measurements are corrupted by additive noise. In this case, our range 

sensor returns a noisy measurement:

𝑧! = ℎ 𝑥!; 𝑏" +𝑤! = 𝑥! − 𝑏" +𝑤!

in which 𝑤! is the noise term.

• We’ll assume i.i.d. zero-mean Gaussian noise, 𝑓#( 𝑤! = $
% &'

𝑒(
)(
*

*+*

• The resulting conditional pdf for the measurement (given 𝑥! and 𝑏") is given by

𝑓)( 𝑧!|𝑥! , 𝑏" =
1

𝜎 2𝜋
𝑒(

*((+ ,(;.,
*

&%*

ØGiven the state and the beacon ID, the range measurement is a Gaussian r.v. whose mean is equal 
to the true range.



Measurement Model
• The sensor measurement model is a conditional pdf:

𝑓R' 𝑧!|𝑥!, 𝑏I =
1

𝜎 2𝜋
𝑒,

S',T %';#)
*

*U*

• This pdf describes the behavior the a r.v. 𝑧! when 𝑥! and 𝑏I are known.
• As such, we can expect 𝑓R' to behave like any other pdf, e.g.,

H
,V

V
𝑓R' 𝑧!|𝑥!, 𝑏I 𝑑𝑧! = 1

x

z

b



Measurement Likelihood
• The measurement likelihood is a function of 𝑥!

ℒ 𝑥!; 𝑧!, 𝑏I =
1

𝜎 2𝜋
𝑒,

S',T %';#)
*

*U*

• This likelihood is not a probability. For example,

H
,V

V
ℒ 𝑥!; 𝑧!, 𝑏I 𝑑𝑥! ≠ 1

• The likelihood tells us something about how likely it would be to see various values 
for 𝑥!, but it does not tell us probabilities.

x



Measurement Likelihood
• For a given measurement 𝑧! and specific beacon 𝑏", we can plot the likelihood function on our warehouse map.

• For the case 𝑏" = 𝑏# and 𝑧! = 4.03, we obtain the plot for ℒ 𝑥!; 4.03, 𝑏# shown below (also shown in the book).

• The likelihood achieves its maximum on the circle 
of radius 4.03, centered on beacon 𝑏".

• The value of ℒ 𝑥!; 4.03, 𝑏" looks like a Gaussian 
curve along any radial line extended from beacon 
𝑏".



Out-of-range Measurements
• Clearly the range sensor provides valuable information when it is able to return a distance to a specific beacon.

• Suppose all beacons are out of range, i.e., 𝑥! − 𝑏" > 𝑑$%& for all 𝑖, and therefore ℎ 𝑥!; 𝑏" = 𝐢𝐧𝐟.
• If we assume that the cutoff at 𝑑$%& is sharp (a nice assumption mathematically, even if it is unrealistic in 

practice), we can construct a likelihood for this case: ℒ 𝑥!; 𝑧! = inf, 𝑏" = NONE

ℒ 𝑥!; 𝑧! = inf, 𝑏" = NONE = :1 ℎ 𝑥!; 𝑏" > 𝑑$%&, 𝑖 = 0…7
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

If the cutoff at 𝑑-./ is sharp, the likelihood of 
being within sensing range of a beacon is zero 
when the sensor returns 𝑧! = inf.



A Pseudo-GPS Sensor
• GPS-like sensors return the coordinates of the sensor relative to some fixed, global reference frame.
• In the simplest case, we have 𝑧! = ℎ 𝑥! = 𝑥!.
• It is not unusual to define measurements in units that are different from those used by the robot, e.g., 

the robot might measure its coordinates in meters while the GPS returns coordinates in centimeters.
• In these cases, we simply scale the measurement appropriately: 𝑧! = ℎ 𝑥! = 𝐶𝑥!
• If we now consider additive noise, we obtain our measurement model for noisy GPS-like sensors:

𝑧! = ℎ 𝑥! +𝑤! = 𝐶𝑥! +𝑤!

• If 𝑤! is i.i.d. zero-mean Gaussian noise (as usual), the measurements are governed by a conditional 
Gaussian probability density:

𝑓'! 𝑧! 𝑥!) =
1
|2𝜋Σ|

𝑒𝑥𝑝 −
1
2
𝑧! − 𝐶𝑥! (Σ)*(𝑧! − 𝐶𝑥!) x z



GPS-style Likelihoods
• The likelihood for our GPS-like sensor is given by

ℒ(𝑥!; 𝑧!) =
1
|2𝜋Σ|

𝑒𝑥𝑝 −
1
2 𝑧! − 𝐶𝑥! (Σ)*(𝑧! − 𝐶𝑥!)

• Let’s work on the exponent: 𝑧! − 𝐶𝑥! (

𝑧! − 𝐶𝑥! = 𝐶 𝐶)*𝑧! − 𝑥! → 𝑧! − 𝐶𝑥! ( = 𝐶 𝐶)*𝑧! − 𝑥! ( = 𝐶)*𝑧! − 𝑥! (𝐶(

• Therefore, we can write the likelihood as:

ℒ(𝑥!; 𝑧!) =
1
|2𝜋Σ|

𝑒𝑥𝑝 −
1
2
𝑥! − 𝐶)*𝑧! (𝐶(Σ)*𝐶(𝑥! − 𝐶)*𝑧!)

which has the form of a Gaussian with mean 𝐶)*𝑧! and inverse covariance 𝐶(Σ)*𝐶.

x

x



Simulating States and Measurements
• Given a control tape 𝑢), … , 𝑢],) and a prior distribution for 𝑋), it’s easy to 

generate a sample trajectory 𝑥), … , 𝑥] along with a sample measurement 
history 𝑧), … , 𝑧].

1. Generate a sample for 𝑥0by sampling from
the prior 𝑃(𝑋0 = 𝑥0).

2. Generate a sample measurement 𝑧0 by sampling from
the measurement model 𝑝(𝑍0 𝑥0

3. For each 𝑖:
1. Generate a sample for 𝑥$ by sampling from the 

transition distribution 𝑝(𝑋$ 𝑥$10, 𝑢$10
2. Generate a measurement sample 𝑧$ by sampling 

from the measurement model 𝑝(𝑍$ 𝑥$



Next Time…
Perception
• Bayes Filter
• Markov Localization
• Monte Carlo Localization


