
CS 3630!

Lecture 12: 
A Logistics Robot:               

Uncertainty in Actions



Logistics Robots



Control 
Uncertainty

• Now that we have model for omni-wheel robot 
kinematics, we can develop a model for uncertainty  
in the robot’s motion.
• We’ll start with a 1-D robot, and develop the 

necessary probability theory to model and propagate 
various types of uncertainty (uniform and Gaussian 
noise in the motion)
• Once we understand the basics, we’ll extend the 

results to the 2-D case (motion in the plane).
• We’ll use multivariate Gaussian random variables to 

model noise/disturbances in the motion model.



Modeling Uncertainty in Actions
• For our vacuum cleaning robot, we considered uncertainty when trying to move from one 

room to another.
• The uncertainties were given to us in a large table of conditional probabilities.
• There was no clear connection between these conditional probabilities and the geometry of 

the robot’s motion.

• For any starting location in in the living room, 
the probability of arriving to the kitchen by 
moving right is 0.8.
• For any starting location in in the living room, 

the probability of arriving to the halway by 
moving down is 0.8.

Ø These probabilities don’t seem to be based on 
the reality of navigating in this environment.



Motion Model – the 1-D Case.
• Wheeled mobile robot that is constrained to move along a single line (e.g., a robot on a 

track, or a robot following a magnetic guidewire in the floor).
• We will define the control input as 𝑢! = 𝑣Δ𝑇, i.e., we command the robot to move along 

the track with velocity 𝑣 for an amount of time Δ𝑇.
• In the absence of uncertainty, the state equation is simple: 𝑥!"# = 𝑥! + 𝑢!
• If we execute a sequence of actions, 𝑢!, 𝑢!"# we arrive to 𝑥!"$ = 𝑥! + 𝑢! + 𝑢!"#

𝑥! 𝑥!"# 𝑥!"$

𝑢! 𝑢!"#

Ø If there’s no uncertainty in the motion model, predicting future states is pretty easy.



Motion Model – the 1-D Case.
• Let’s add noise to our motion model:

𝑥!"# = 𝑥! + 𝑢! + 𝜂!
• Here, 𝜂! is a noise term, which could be the result of:

• Variable friction on the floor (e.g., dusty floors are slippery)
• Variable motor friction
• Erratic battery discharge/uneven control voltages/currents to the motor
• Worn brakes (variations in time required to stop moving)

Common assumptions about 𝜼𝒌
1. The noise 𝜂! is independent of 𝜂% for all 𝑗 ≠ 𝑘
2. All random disturbances have the same probability distribution.

Ø Random variables that satisfy these two conditions are said to be independent and identically distributed (i.i.d.)

ØWe typically assume i.i.d. noise for both motion and sensors, and it’s almost always justified.



Motion Model – the 1-D Case.
• Consider the motion model  𝑥!"# = 𝑥! + 𝑢! + 𝜂!, and let 𝜂!~ 𝑈(0,1)
• Suppose 𝑥! is known.

• What can we say about 𝑥!"#?

𝑥! 𝑋!"#

𝑢!

The next state is a random variable with uniform distribution

𝑋!"#~ 𝑈(𝑥! + 𝑢!, 𝑥! + 𝑢! + 1)



Motion Model – the 1-D Case.
• That was so simple!!

• What happens after two time steps?

𝑥!"& = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#
𝑢!

• The term 𝑥! + 𝑢! + 𝑢!"#is completely deterministic (and easy to compute).

• The term 𝜂! + 𝜂!"# is completely stochastic, and somewhat mysterious.

• We need to determine the probability distribution of a sum of random variables.

𝑢! + 1
???????



Sum of Two Random Variables
• Let the random variable  𝜂*$ = 𝜂# + 𝜂$ be the sum of two random variables 𝜂#, 𝜂$.

• The probability density function for 𝜂*$ is given by:

𝑓+!" 𝛼 = ,
,-

-
𝑓+# 𝑢 𝑓+" 𝛼 − 𝑢 du

• This is a convolution integral (a useful tool for signal processing and control theory), 
sometimes written as 

𝑓+!" = 𝑓+# ∗ 𝑓+"

• This is not a probability theory class, not a signal processing class, not a calculus class, so we 
won’t worry about evaluating these integrals. We’ll skip to the payoff…



Sum of Two Random Variables
For  𝜂*$ = 𝜂# + 𝜂$ if 𝜂!~ 𝑈(0,1), the probability density function for 𝜂*$is:

𝑓+!" 𝛼 = 7 𝛼 0 ≤ 𝛼 ≤ 1
2 − 𝛼 1 ≤ 𝛼 ≤ 2



Motion Model – the 1-D Case.
After two time steps,   𝑥!"& = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#

𝑢! = 3 𝑢!"# = 3

𝑋!"$

Ø Both of 𝑋!"# and 𝑋!"& are random variables.
Ø They do not have the same probability distribution!!!

Height not to scale…



The Sum of 𝑛 i.i.d. Uniform Random Variables 
Let the random variable  𝜂*0 = 𝜂# +…+ 𝜂0 be the sum of 𝑛 random variables.
The pdf for 𝜂*0is called the Irwin-Hall distribution.

[wikipedia] 



The Sum of 𝑛 i.i.d. Uniform Random Variables 
This is a nice piece of trivia, but should we really care about this?
YES! As 𝑛 becomes large, 𝑓+!$ approaches a Gaussian distribution.

Even for 𝑛 = 3 we can start to see the similarity. 

In general, when we add together a bunch of i.i.d. random variables, things start to look Gaussian before long.



Gaussian Noise
• The uniform distribution is great for teaching concepts, but typically it’s not a very realistic 

model for noise in real-world systems.
• The Gaussian distribution is much more common, and much more realistic in most cases.

𝑓1 𝑥 =
1

𝜎 2𝜋
𝑒,

2,3 "

$4"

• For stochastic noise, we often assume 𝜇 = 0 (aka zero-mean Gaussian noise).
• For 𝜂!~ 𝑁(0, 𝜎$), we have 𝐸 ∑𝜂! = 𝜇 = 0, which yields:

𝐸 ∑𝜂! = ∑𝐸 𝜂! = 0

Ø If we sum a bunch of i.i.d. zero-mean Gaussian random samples, on average the sum will be 
(approximately)  zero.



Gaussian Noise
• One drawback to using Gaussian noise in our motion model is that 𝑃(𝛼 ≤ 𝜂! ≤ 𝛽) > 0 for 

any 𝛼, 𝛽 with 𝛼 < 𝛽 .
• Clearly this isn’t realistic. 
• Is there really a possibility that 105 ≤ 𝜂! ≤ 106 miles for our robot?
• Happily, most of the probability is concentrated near the mean:

𝑃(𝜇 − 2𝜎 ≤ 𝜂! ≤ 𝜇 + 2𝜎) ≈ 0.954

Ø The tails of the Gaussian don’t really hurt that much.  Gaussians are a good approximation 
to reality.

The variance 𝜎$ is a parameter of the model (either sensor or motion model), and can be 
estimated, as we’ve seen in previous lectures.



1D Motion Model with Gaussian Noise
• Consider again the motion model  𝑥!"# = 𝑥! + 𝑢! + 𝜂!, but now let 𝜂!~ 𝑁 0, 𝜎& , with all 𝜂! independent.

• Suppose 𝑥! is known.

• What can we say about 𝑥!"#?

𝑥! 𝑋!"#

𝑢!

• The next state is a random variable with Gaussian distribution  𝑋!"#~ 𝑁(𝑥! + 𝑢!, 𝜎&).
• 𝐸[𝑋!"#] = 𝑥! + 𝑢!
• The variance of 𝑋!"# is exactly the variance in the noise.



1D Motion Model with Gaussian Noise
• Not too difficult…

• What happens after two time steps?
𝑥!"& = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#

𝑢!

• The term 𝑥! + 𝑢! + 𝑢!"#is completely deterministic (and easy to compute).

• The term 𝜂! + 𝜂!"# is completely stochastic, and somewhat mysterious.

• We need to determine the probability distribution of a sum of Gaussian random variables.

𝑢! + 1
???????



The Sum of i.i.d. Gaussian Random Variables
• Let the random variable  𝜂!" = 𝜂# + 𝜂", with 𝜂#, 𝜂"~ 𝑁(0, 𝜎").

• The probability density function for 𝜂!% is given by the convolution integral:

𝑓$&% 𝛼 = -
%&

& 1
𝜎 2𝜋

𝑒%
' %

"(%
1

𝜎 2𝜋
𝑒%

)%' %

"(% du

• If you work this out, you’ll discover that the sum 𝜂!" is itself a Gaussian random variable:

𝜂!"~ 𝑁(0, 2𝜎").

• In general, for 𝜂!" = 𝜂# + 𝜂", with 𝜂#, 𝜂" independent, and 𝜂#~ 𝑁(𝜇#, 𝜎#"), 𝜂"~ 𝑁(𝜇", 𝜎""), then the 
sum is a Gaussian random variable 𝜼𝑺𝟐~𝑵(𝝁𝟏 + 𝝁𝟐, 𝝈𝟏𝟐 + 𝝈𝟐𝟐).



1D Motion Model with Gaussian Noise
After two time steps,   𝑥!"& = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#

𝑢! = 3 𝑢!"# = 3

𝑋!"$

Ø Both of 𝑋!"# and 𝑋!"& are Gaussian random variables.
Ø The do not have the same variance!!!



The Sum of 𝑛 i.i.d. Gaussian Random Variables
• We can generalize (using induction) to the case of  𝜂'( = 𝜂# +⋯+ 𝜂(, with 𝜂! independent, and 
𝜂!~ 𝑁(𝜇!, 𝜎!&):

𝜂'(~ 𝑁(∑𝜇!, ∑𝜎!&)

• For the case of i.i.d. zero-mean Gaussian noise, if the initial state is 𝑥#, and we execute the action sequence 
𝑢#, … , 𝑢(, the state 𝑋("# is a random variable with distribution

𝑋("#~ 𝑁 𝑥# +=
!

𝑢! , 𝑛𝜎&

• The good news: 𝐸[𝑋("# ] = 𝑥# + ∑! 𝑢!
• The bad news: 𝑣𝑎𝑟(𝑋("#) = 𝑛𝜎& ---- the variance increases linearly with the number of steps!

• More good news: we’ll be able to use sensing to deal with this increasing uncertainty (not today, though).



Bivariate Gaussians
For our motion model, we’ll use

𝑥!"# = 𝑥! + 𝑢! + 𝜂!

with 𝑥!"#, 𝑥!, 𝑢!, 𝜂! ∈ ℝ& and 𝜂!~𝑁 0, Σ .

𝑥!

𝑋!"#

𝑢! 𝑋!"#is a bivariate Gaussian,  𝑋!"#~𝑁 𝑥! + 𝑢!, Σ



Bivariate Gaussians
What about two stages of execution?

𝑥!"& = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

with 𝑥!"&, 𝑥!"#, 𝑥!, 𝑢!"#, 𝑢!, 𝜂!"#, 𝜂! ∈ ℝ& and 𝜂!"#, 𝜂!~𝑁 0, Σ .

𝑥!

𝑋!"#

𝑢!

𝑋!"&is more complicated.
Ø If the ellipses for the two control inputs are not aligned, 

computing the covariance for 𝑥!"& can be a bit messy.
Ø Not difficult if Σ is a diagonal matrix.

𝑢! + 1

???????



Multiple Time Steps
Conceptually, there’s nothing new here.
Ø Each time step adds a bit of Gaussian noise to the control input, introducing uncertainty 

that increases with the number of steps.

Mathematically, things become a bit more difficult. We won’t go into the details here.

Instead, we’ll develop two numerical methods to propagate uncertainty, and both of these 
will be applicable to the case of Gaussian noise in our motion model:
• Markov Localization: Divide the world into a grid, and keep track of the probability mass 

that arrives to each grid cell as the robot moves.
• Monte Carlo Localization: Simulate lots of robots (generate samples from the noise 

distributions to simulate the motion model). The distribution of the simulated robots give 
insight to the probability distribution associated to the robot’s location.



An example (ground truth) trajectory

• Robot starts out in bottom-left, goes right, then up in ”aisle 2”:



Propagation of uncertainty
• Finite elements version:



Next Time…
• Sensor models
• Markov Localization
• Monte Carlo Localization


