CS 3630!

Lecture 11:

An omnidirectional
Logistics Robot

What exactly is logistics?

- Logistics is the management of the flow of things from point of origin to point of consumption [Wikipedia].
- This typically involves multiple stages of packaging, routing, transport.
- There are plenty of robotics applications:
- Loading/unloading
- Palletizing
- Cargo container transport
- Packaging
- Last mile delivery
- Warehouse operations
(For now, we will consider the narrow problem of warehouse operations, in particular, the problem of moving inventory from Point A to Point B in a warehouse.

Robots in Warehouses

SqUID

A Few Warehouse Robots

Autoguide Mobile Robots

GreyOrange Inc.

Tompkins Robotics

Milvus Robotics

A few mobile robots whose purpose in life is to move inventory from place to place in large warehouses.

From Kiva to Amazon Robotics

- 2003: Kiva Systems founded
- 2009: Rank \#6 in Inc. 500 list of fastest growing co's in America
- 2012: Acquired by Amazon for \$775M
- 2015: Name change: Amazon Robotics LLC
- 2019: More than 200,000 robots deployed in Amazon warehouses

Peter Wurman, Mick Mountz, Raff D'Andrea

Amazon's Warehouse Robots

Fetch Robotics

- Cloud robotics platform (claim to be the first)
- Mobile manipulation
- Sponsored competition at ICRA (GT won, and took home a shiny new robot).
- 2014: Founded (after Willow Garage ended)
- 2019: Al Breakthrough Award (best overall robotics company)
- 2021: Acquired by Zebra for $\$ 305 \mathrm{M}$

CEO, Melonee Wise

Autonomous Mobile Robots

In the world of warehouse robotics, we there are two main categories or mobile robot platform:

- Automated Guided Vehicles (AGVs)
- Follow fixed routes
- Rely on wires or magnets embedded in the floor to track routes
- Simple sensing to avoid collisions (typically, simply stop when an obstacle appears)
- Rely on predictable and known environment
- Train the humans to avoid the robots
- Autonomous Mobile Robots (AMRs)
- Capable of planning general motion
- Typically require a map of the environment
- Can navigate based on obstacles (i.e., more than simple collision avoidance)
- Robots know how to avoid the humans

In this chapter...

- Omnidirectional mobile robots
- Can move in arbitrary directions
- Control input is wheel angular velocity
- Easy to convert wheel angular velocity to robot velocity
- Forces and torques aren't important
- Continuous state space
- Robot position is specified by $x-y$ coordinates
- Coordinates are real numbers, not discrete grid points or names of rooms
- Discrete time system
- No real need for continuous time
- Provides access to nice tools from Bayesian inference
- Fairly simple sensors
- Proximity (binary sensor that detects obstacles)
- Range (using RFID tags)
- Pseudo-GPS (mainly to introduce conditional Gaussian models)

Continuous State

In this chapter, we level up to continuous state for the very first time.
The question: how to represent knowledge? Three options:

- Gaussian density
- Finite elements
- Sampling-based

Continuous state

- Part of the 2D plane:

$$
x \in \mathcal{D} \subset \mathbb{R}^{2}
$$

- No orientation yet:

- omni-directional movement

Gaussian Densities

- Remember 1D:
$\mathcal{N}\left(x ; \mu, \sigma^{2}\right) \doteq \frac{1}{k} \exp \left\{-\frac{1}{2} \frac{\|x-\mu\|^{2}}{\sigma^{2}}\right\}^{20}$
- Just a quadratic inside!
- Rewrite as:
$\mathcal{E}\left(x ; \mu, \sigma^{2}\right) \doteq \frac{1}{2}(x-\mu) \sigma^{-2}(x-\mu)$
- Generalize to:
$\mathcal{E}(x ; \mu, \Sigma) \doteq \frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)$
$\mathcal{N}(x ; \mu, \Sigma) \doteq \frac{1}{k} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}$

Multivariate Gaussians, the detail...

- Until now, we have considered Gaussian distributions for scalar random variables.
- For univariate Gaussians, η is a scalar, and it appears in the exponent:

$$
f_{\mathrm{H}}(\eta)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(\eta-\mu)^{2}}{2 \sigma^{2}}}
$$

- Note that H is the uppercase version of Greek letter η.
- For a multivariate Gaussian, the random variable is a vector:

$$
\eta=\left[\begin{array}{l}
\eta_{x} \\
\eta_{y}
\end{array}\right]
$$

- How do we put a vector in an exponent??

Multivariate Gaussians

- Let's take a look at the exponent in the Gaussian distribution:

1. The term $|x-\mu|$ is the distance from x to the mean.
2. The term $(x-\mu)^{2}$ is the squared distance to the mean.
3. The term $\sigma^{-2}(x-\mu)^{2}$ is a scaled squared distance to the mean.
> This idea - computing a scaled squared distance to the mean - is the key to extending Gaussians to the multivariate case.
> Instead of scalar scaling, we can actually apply scaling along different axes, e.g., we can treat motion in the direction of the x-axis as being more uncertain than motion in the direction of the y-axis.

Multivariate Gaussians

First let's define the relevant vectors:

$$
\mu=\left[\begin{array}{l}
\mu_{x} \\
\mu_{y}
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

NOTE:

- For the next few slides, we'll use \vec{x} to denote a vector in \mathbb{R}^{2}.
- There's a possibility of confusion, because most of the time use x to denote a vector $x \in \mathbb{R}^{2}$.
- For the next derivations, we will use $\mathrm{x}, \mathrm{y}, \in \mathbb{R}$ to denote the scalar coordinates of the point \vec{x}.
- Don't lose track of this!

Quadratic Forms

- The squared distance between vectors \vec{x} and μ can be conveniently written as:

$$
(\vec{x}-\mu)^{T}(\vec{x}-\mu)=\left[\begin{array}{ll}
x-\mu_{x} & y-\mu_{y}
\end{array}\right]\left[\begin{array}{l}
x-\mu_{x} \\
y-\mu_{y}
\end{array}\right]=\left(x-\mu_{x}\right)^{2}+\left(y-\mu_{y}\right)^{2}
$$

- Note that this term evaluates to a scalar value!
- The term $\left(x-\mu_{x}\right)^{2}$ gives the squared distance along the x-axis, and the term $\left(y-\mu_{y}\right)^{2}$ gives the squared distance along the y-axis.
- We can scale these simply by multiplying each by a scalar coefficients, say k_{x} and k_{y} :

$$
k_{x}\left(x-\mu_{x}\right)^{2}+k_{y}\left(y-\mu_{y}\right)^{2}
$$

- We can incorporate these scaling values directly into a nice matrix equation:

$$
\left[\begin{array}{ll}
x-\mu_{x} & y-\mu_{y}
\end{array}\right]\left[\begin{array}{cc}
k_{x} & 0 \\
0 & k_{y}
\end{array}\right]\left[\begin{array}{l}
x-\mu_{x} \\
y-\mu_{y}
\end{array}\right]=k_{x}\left(x-\mu_{x}\right)^{2}+k_{y}\left(y-\mu_{y}\right)^{2}
$$

> If you understand this, multivariate Gaussians are easy!

Quadratic Forms

- Let's generalize this just a bit

$$
\|\vec{x}-\mu\|_{\Sigma^{-1}}^{2}=(\vec{x}-\mu)^{T} \Sigma^{-1}(\vec{x}-\mu)=\left[\begin{array}{ll}
x-\mu_{x} & y-\mu_{y}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x-\mu_{x} \\
y-\mu_{y}
\end{array}\right]
$$

- If you multiply this out (a bit tedious), you'll arrive to the general equation for an ellipse:
- Center of the ellipse is at μ
- The matrix Σ^{-1} encodes the major and minor axes (direction and length).
- Check back to your old geometry books to refresh your memory.

Comments:

- We say that the matrix Σ is positive definite if $\vec{x}^{T} \Sigma \vec{x}>0$ for all $\vec{x} \neq 0$.
- If a matrix Σ is positive definite, then Σ^{-1} exists, and $\vec{x}^{\mathrm{T}} \Sigma^{-1} \vec{x}=k$ defines an ellipse, for $k>0$.

Multivariate Gaussians

- We can use this idea to build an n-dimensional Gaussian distribution:

$$
f_{\vec{X}}(\vec{x})=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} e^{-\frac{1}{2}\|\vec{x}-\mu\|_{\Sigma^{-1}}^{2}}=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} e^{-\frac{1}{2}(\vec{x}-\mu)^{T} \Sigma^{-1}(\vec{x}-\mu)}
$$

- As usual, the action is in the exponent; the constant $\sqrt{(2 \pi)^{n}|\Sigma|}$ is merely to scale the pdf so that $\int f_{\vec{X}}(\vec{x}) d \vec{x}=1$.
- The value of $f_{\vec{X}}(\vec{x})$ decreases exponentially with the square of the scaled distance $\|\vec{x}-\mu\|_{\Sigma^{-1}}$.
- The matrix Σ is called the covariance matrix. In the two-dimensional case, it is defined as:

$$
\Sigma=\left[\begin{array}{cc}
E\left[\left(X-\mu_{x}\right)^{2}\right] & E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right] \\
E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right] & E\left[\left(Y-\mu_{y}\right)^{2}\right]
\end{array}\right]
$$

Multivariate Gaussians in code:

def gaussian(x:np.array, mean=np.zeros((2,)), cov=np.eye(2)):
"""Evaluate multivariate Gaussian at x of shape(m,n), yields (m,) vector.""" assert x.shape $[-1]==2$, f"error: x has shape $\{x . s h a p e\} "$ $\mathrm{k}=$ math.sqrt(np.linalg. det($2 *$ math. pi*cov))
e = x - mean
$\mathrm{E}=\mathrm{np} . \operatorname{sum}(0.5 *(\mathrm{e} @ \mathrm{np} . \operatorname{linalg} . \operatorname{inv}(\operatorname{cov}) * \mathrm{e}), \mathrm{axis}=-1)$ return $n p \cdot \exp (-E) / k$

$$
\mathcal{N}(x ; \mu, \Sigma) \doteq \frac{1}{k} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}
$$

$$
k=\sqrt{(2 \pi)^{n}|\Sigma|}=\sqrt{|2 \pi \Sigma|} .
$$

Finite Elements

- Just chop up 2D spaces into a 2D grid of finite cells or "elements"
- How does this scale with dimension?

Sampling-based Representation

- Simple, efficient alternative
- Scales with "typical set"

Actions

Until this point, we have ignored the issues related to robot motion:

- The trash sorting robot had built-in sorting actions.
- The vacuuming robot had built-in motion primitives to navigate from room to room.
- We modeled uncertainty, but we really didn't do any work to develop these models, which really should be related to reliability of the robot's actions/motions.
In this chapter, we'll take a first look at robot motion:
- Rolling wheels induce motion of a mobile platform.
- Uncertainty in the effects of actions is modeled directly in terms of the robot's motion.
$>$ We'll start with the kinematics of omni wheels...

Omni Wheels

Typical wheel:

- Rolls forward (the driving direction) without slipping
- Cannot slide perpendicular to the steering direction
- Wheel velocity is therefore always in the driving direction
- The inability to slide is a nonholonomic constraint

Omni wheel:

- Rolls forward (the driving direction) without slipping
- Can slide perpendicular to the steering direction
- Wheel velocity not constrained to be in the driving direction!
- Sliding is passive, just the right amount to accommodate the wheel velocity.

Typical Omni-Wheel robot

The reason for three wheels:

- Steering directions of the three wheels positively spans the plane, plus stability.
- Can move in any direction instantaneously by an appropriate choice of wheel speed.

Wheel Kinematics

- In this chapter, we consider only pure translations (we'll consider orientation and rotation in a later chapter).
- If the robot moves with a pure translational velocity, then every point on the robot moves with the same velocity.
- Define the translational velocity of the robot to be

$$
v=\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

The velocity of each wheel can be decomposed into two components: $v_{\|}$and v_{\perp}.

- $v_{\|}$is the component of wheel velocity that is parallel to the driving direction.
- v_{\perp} is the component of the wheel velocity that is perpendicular to the driving direction.

Decomposing Robot Velocity

$$
u_{\perp}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \quad u_{\|}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

Decomposing Robot Velocity

- We can now decompose v into the components parallel to and perpendicular to the steering direction.
- This is done by projecting v onto $u_{\|}$and u_{\perp}

$$
v=\left(v \cdot u_{\|}\right) u_{\|}+\left(v \cdot u_{\perp}\right) u_{\perp}
$$

which can be written as

$$
v=v_{\|} u_{\|}+v_{\perp} u_{\perp}
$$

where

$$
\begin{gathered}
v_{\|}=-v_{x} \sin \theta+v_{y} \cos \theta \\
v_{\perp}=v_{x} \cos \theta+v_{y} \sin \theta
\end{gathered}
$$

$$
u_{\perp}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right] \quad u_{\|}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

Note that $v_{\|}$and v_{\perp} are scalars!

Three Uniformly Positioned Wheels

Example

$$
\left[\begin{array}{l}
v_{\|}^{1} \\
v_{\|}^{2} \\
v_{\|}^{3}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-0.866 & -0.5 \\
0.866 & -0.5
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-0.5 \\
-0.5
\end{array}\right]
$$

Example

Wheel Jacobian

- A Jacobian matrix maps velocities in one coordinate system to velocities in another coordinate system.
- For our case, we want to map the velocity of the robot v to wheel rotation, specified as angular velocities ω^{i} for $i=1,2,3$.
- The desired relationship is given by:

$$
\left[\begin{array}{l}
\omega^{1} \\
\omega^{2} \\
\omega^{3}
\end{array}\right]=J\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

- We'll need to relate rotation of the wheel to translation in the driving direction.

Rolling Without Slipping

Suppose a wheel rolls without slipping a linear distance x.

Rolling Without Slipping

Using basic geometry, we know that $x=\ell=r \theta$.

Differentiating both sides, we

 obtain$$
\mathrm{v}=\frac{\mathrm{d}}{\mathrm{dt}} x=\ell=r \frac{d}{d t} \theta=r \omega
$$

and therefore,

$$
\omega=\frac{1}{r} v
$$

Mapping Robot Velocity to Wheel Rotation

Combining these results, we obtain our final, Jacobian relationship:

$$
\begin{gathered}
v_{\|}^{i}=-v_{x} \sin \theta^{i}+v_{y} \cos \theta^{i} \\
v_{\perp}^{i}=v_{x} \cos \theta^{i}+v_{y} \sin \theta^{i}
\end{gathered}
$$

$$
\left[\begin{array}{c}
\omega^{1} \\
\omega^{2} \\
\omega^{3}
\end{array}\right]=\underbrace{\frac{1}{r}\left[\begin{array}{ll}
-\sin \theta^{1} & \cos \theta^{1} \\
-\sin \theta^{2} & \cos \theta^{2} \\
-\sin \theta^{3} & \cos \theta^{3}
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]}
$$

This is the Jacobian matrix, J

$$
\left[\begin{array}{c}
\omega^{1} \\
\omega^{2} \\
\omega^{3}
\end{array}\right]=\frac{1}{r}\left[\begin{array}{cc}
0 & 1 \\
-0.866 & -0.5 \\
0.866 & -0.5
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

Discrete Time Motion Model

- The control input for our robot is a linear velocity v (which is converted to angular velocities for each wheel).
- We could model the motion of the robot using a differential equation: $\dot{\boldsymbol{x}}=f(\boldsymbol{x}, \boldsymbol{u})$

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]
$$

- It's much simpler to use a discrete time model for the position of the robot:

$$
\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right]=\left[\begin{array}{l}
x_{t}+v_{x} \Delta T \\
y_{t}+v_{y} \Delta T
\end{array}\right]=\left[\begin{array}{l}
x_{t}+u_{x} \\
y_{t}+u_{y}
\end{array}\right]
$$

- If the motion of the robot happened to be deterministic and error-free, this would be all we need.
- We'll assume that the motion model is stochastic, and show how to model uncertainty using continuous probability density functions.

Limitations of our Model

The model we developed for omni-wheeled robots made several simplifications to what we might find in real applications:

- We conveniently aligned the robot's coordinate system to a global world coordinate frame. Specifying the angle θ^{i} was simple, because it was specified in a coordinate frame that was fixed w.r.t. to the robot.
- Real robots sometimes rotate. We could accomplish this with the exact same robot by adding a rotational component to the robot velocity (i.e., robot angular velocity):

$$
v=\left[\begin{array}{lll}
\omega^{\text {robot }} & v_{x} & v_{y}
\end{array}\right]^{T}
$$

- If the robot rotates, then we'll need to represent its orientation w.r.t. the global coordinate frame, since the steering directions of the wheels will change if the robot rotates.

Mecanum Wheels

- We can make the wheels a bit more interesting by changing the orientation of the "roller" wheels that allow sliding - Mecanum Wheels.
- The math is (only) slightly more complex, but we won't go further in this course.

