CS 3630!

Lecture 11:
An omnidirectional
Logistics Robot

Logistics Robots

What exactly is logistics?

* Logistics is the management of the flow of things from point of origin to point of
consumption [Wikipedia].

* This typically involves multiple stages of packaging, routing, transport.

* There are plenty of robotics applications:
* Loading/unloading

* Palletizing

* (Cargo container transport
* Packaging

* Last mile delivery

* Warehouse operations

» For now, we will consider the narrow problem of warehouse operations, in particular, the
problem of moving inventory from Point A to Point B in a warehouse.

Robots in Warehouses

SqUID

bionichive.com

A Few Warehouse Robots

Autoguide Mobile Robots GreyOrange Inc. Tompkins Robotics Milvus Robotics

A few mobile robots whose purpose in life is to move inventory from place to place in large warehouses.

From Kiva to Amazon Robotics

e 2003: Kiva Systems founded

e 2009: Rank #6 in Inc. 500 list of fastest growing co’s in America

* 2012: Acquired by Amazon for $775M

e 2015: Name change: Amazon Robotics LLC

* 2019: More than 200,000 robots deployed in Amazon warehouses

NAVIGATION SYSTEM

A camera facing upward reads bar

codes placed under inventory

racks to identify them. Another
camera located at the bottom
of the robot views bar codes
on the floor. This location
information is combined with
readings from other navigation

sensors, such as encoders,

accelerometers, and rate gyros.

LIFTING MECHANISM

A large screw turns to

raise racks of inventory

5 centimeters from the
ground. At the same time, the
wheels make the robot rotate
in the opposite direction to

POWER SYSTEM

Four lead-acid batteries
power the motors and
onboard electronics. When

keep the rack motionless. »
batteries run low, the
K.vfsy:m robot automatically drives

18 6 to a charging station.
COLLISION-
DETECTION SYSTEM
Infrared sensors
and touch-sensitive

bumpers stop the DRIVING SYSTEM

Two brushless dc motors
control independent
neoprene rubber wheels,

robot if people or
objects get in its way.

IEEE Spectrum, Jul 2008
moving the robot at . / <] T
1.3 meters per second. . e . s it ’) i

Amazon’s Warehouse Robots

M

MIND BLOWING

VIDEQOS

Fetch Robotics

Cloud robotics platform (claim to be the first)
Mobile manipulation

Sponsored competition at ICRA (GT won, and took home a shiny new robot).
2014: Founded (after Willow Garage ended)

2019: Al Breakthrough Award (best overall robotics company)
2021: Acquired by Zebra for S305M

CEO, Melonee Wise

Autonomous Mobile Robots

In the world of warehouse robotics, we there are two main categories or mobile robot
platform:

 Automated Guided Vehicles (AGVs)

* Follow fixed routes

Rely on wires or magnets embedded in the floor to track routes
Simple sensing to avoid collisions (typically, simply stop when an obstacle appears)

Rely on predictable and known environment
Train the humans to avoid the robots

e Autonomous Mobile Robots (AMRs)
e Capable of planning general motion
* Typically require a map of the environment
* Can navigate based on obstacles (i.e., more than simple collision avoidance)
* Robots know how to avoid the humans

In this chapter...

* Omnidirectional mobile robots
* Can move in arbitrary directions
e Control input is wheel angular velocity
* Easy to convert wheel angular velocity to robot velocity
* Forces and torques aren’t important

e Continuous state space

* Robot position is specified by x-y coordinates
e Coordinates are real numbers, not discrete grid points or names of rooms

Discrete time system

* No real need for continuous time
* Provides access to nice tools from Bayesian inference

* Fairly simple sensors
* Proximity (binary sensor that detects obstacles)
* Range (using RFID tags)
* Pseudo-GPS (mainly to introduce conditional Gaussian models)

In this chapter, we level up to continuous state for the very
first time.

CQ nt| NUOUS The question: how to represent knowledge? Three options:
- Gaussian density

State

- Finite elements

- Sampling-based

Continuous state

* Part of the 2D plane:
r € D C R?

* No orientation yet:
* omni-directional movement

e Remember 1D:

1 1 ||z — p|?
Nz ,0%) = wexpf—5 1210

20

2 o2
10

Gaussian Densities /\

e Just a quadratic inside!

* Rewrite as: % 20 40 60 80
1 _
E(@;p,0%) = o (2 —p)o " (z — p)
e Generalize to:
1 1 1

E@mD) =Sz -p)'S (@—p) N@mwD) = exp{-5(@—p)'3 (= pn)}

Multivariate Gaussians, the detail...

Until now, we have considered Gaussian distributions for scalar random variables.

For univariate Gaussians, 1 is a scalar, and it appears in the exponent:

1 _(m-w*
e 202

fu(m) =

oV 2T

Note that H is the uppercase version of Greek letter 7.

For a multivariate Gaussian, the random variable is a vector:

1=y

How do we put a vector in an exponent??

Multivariate Gaussians

* Let’s take a look at the exponent in the Gaussian distribution:

1. Theterm |x — u| is the distance from x to the mean.
2. Theterm (x — u)? is the squared distance to the mean.
3. Theterm o %(x — u)? is a scaled squared distance to the mean.

» This idea — computing a scaled squared distance to the mean —is the key to extending
Gaussians to the multivariate case.

» Instead of scalar scaling, we can actually apply scaling along different axes, e.g., we can treat
motion in the direction of the x-axis as being more uncertain than motion in the direction of
the y-axis.

Multivariate Gaussians

NOTE:
e For the next few slides, we’ll use X to denote a vector in R?.

* There’s a possibility of confusion, because most of the time use x to denote a vector x € R?.

* For the next derivations, we will use X, y, € R to denote the scalar coordinates of the point x.

 Don’t lose track of this!

Quadratic Forms

* The squared distance between vectors X and u can be conveniently written as:

G-p' G- ==t Y=l 20 = G- p?+ (v 1)

Note that this term evaluates to a scalar value!

2
The term (x — p,)? gives the squared distance along the x-axis, and the term (y — ,uy) gives the squared
distance along the y-axis.

We can scale these simply by multiplying each by a scalar coefﬂuents say k, and k,,:
ko (X — py)? + ky(y .uy)

* We can incorporate these scaling values directly into a nice matrix equation:

x—u 2
[X — Ux Y — Uy] [0 ke] x] _kx(x_.ux)z-l'kY(y_'uy)

» If you understand this, multivariate Gaussians are easy!

Quadratic Forms

* Let’s generalize this just a bit

> _ N2 _ (2 _ N\Ty-1(2 _ x — _ a bl[* — Hx
12~ pllfr = G- 2@ = = e Yol |T

* If you multiply this out (a bit tedious), you’ll arrive to the general equation for an ellipse:
* Center of the ellipse is at u
 The matrix £~ tencodes the major and minor axes (direction and length).
e Check back to your old geometry books to refresh your memory.

Comments:
* We say that the matrix X is positive definite if XT XX > 0 for all ¥ # 0.

e If a matrix X is positive definite, then ™1 exists, and X "2~ 1X = k defines an ellipse, for k > 0.

Multivariate Gaussians

 We can use this idea to build an n-dimensional Gaussian distribution:

o) = i L ewTw

2
Jeo 3l Jeozl

* As usual, the action is in the exponent; the constant \/(Zn)"IZI is merely to scale the pdf so that [fz(X)dx = 1.
* The value of f+(X) decreases exponentially with the square of the scaled distance ||X — p|| g-1.

* The matrix X is called the covariance matrix. In the two-dimensional case, it is defined as:

5 = E[(X — .ux)z] E[(X — Uy) (Y — .uy)]
E[(X-m) —w)] ENY -]

Multivariate Gaussians in code:

def gaussian(x:np.array, mean=np.zeros((2,)), cov=np.eye(2)):
"““"Evaluate multivariate Gaussian at x of shape(m,n), yields (m,) vector."""
assert x.shapel[-1]==2, f"error: x has shape {x.shape}"

k = math.sqrt(np.linalg.det(2«math.pi*cov))
e = X — mean
E = np.sum(0.5 x (e @ np.linalg.inv(cov) * e), axis=-1)
return np.exp(-E)/k 40
o1 1 T—1
N(z;p,X) = EGXP{_E(w —p)'E N (z—p)} 30
k=4/(2m)"X| =4/ |27X]. 20
10
oO 20 40 60 80

means = [gtsam.Point2(x,y) for x,y in [(20,25),(70,40),(50,15)]]
covariances = [np.diag([sx*%2,sy*x2]) for sx,sy in [(5,10),(20,5)]1]
covariances.append(np.array([[40,35], [35,40]1))

Finite Elements

e Just chop up 2D spaces into a 2D grid of finite cells or “elements”
* How does this scale with dimension?

40

30

20

10

20

40

>

@
Y

60

40

30

20

10

20

40

60

80

40

30

20

10

Sampling-based Representation

* Simple, efficient alternative
 Scales with “typical set”

20

40

\\

D

/

/

60

80

60

50

40

30

20

10

-10

20

40

60

80

10

Actions

Until this point, we have ignored the issues related to robot
motion:

* The trash sorting robot had built-in sorting actions.

* The vacuuming robot had built-in motion primitives to
navigate from room to room.

 We modeled uncertainty, but we really didn’t do any
work to develop these models, which really should be
related to reliability of the robot’s actions/motions.

In this chapter, we’ll take a first look at robot motion:
* Rolling wheels induce motion of a mobile platform.

* Uncertainty in the effects of actions is modeled directly
in terms of the robot’s motion.

> We’ll start with the kinematics of omni wheels...

Omni Wheels

Typical wheel:

* Rolls forward (the driving direction) without slipping
Cannot slide perpendicular to the steering direction
Wheel velocity is therefore always in the driving direction
The inability to slide is a nonholonomic constraint

Omni wheel:

* Rolls forward (the driving direction) without slipping

e Canslide perpendicular to the steering direction

* Wheel velocity not constrained to be in the driving direction!

* Sliding is passive, just the right amount to accommodate the
wheel velocity.

ypical Omni-Wheel robot

The reason for three wheels:
» Steering directions of the three wheels positively spans the plane, plus stability.
 Can move in any direction instantaneously by an appropriate choice of wheel speed.

Wheel Kinematics

* In this chapter, we consider only pure translations (we’ll consider orientation and rotation in a later chapter).

* If the robot moves with a pure translational velocity, then every point on the robot moves with the same velocity.
* Define the translational velocity of the robot to be

v =[]

* v is the component of wheel velocity that is parallel to the
driving direction.

* v, isthe component of the wheel velocity that is perpendicular
to the driving direction.

The velocity of each wheel can be decomposed into two
components: v and v, . //'

Decomposing Robot Velocity

Decomposing Ro

un:[

—sin @
cos 6

oot Velocity

We can now decompose v into the components parallel
to and perpendicular to the steering direction.
This is done by projecting v onto v and u |
v=-wuy + @ uu,
which can be written as
V= v"u" + viu,
where

V| = —VUysinf + v, cos 6
V; = VxcosB + vy, sinf

Note that v and v are scalars!

hree Uniformly Positioned Wheels

U =

91 =0

0% =120

93 = 240
—sin @

cos 6

<[}
s
a-[ae

vj 0 1 1.,
2 - X
v _[—0.866 —0.5] o]

0866 —05] ”

Example

Z::Z =[—0.%66 —(1).5] [O]=[—(1) 5]

0.866 —0.5 ! —0.5

Example

Z::Z - [—0%66 —(1).5]] = [—0%66]

0.866 —0.5 ¥ 0.866

Wheel Jacobian

A Jacobian matrix maps velocities in one coordinate system to velocities in another coordinate system.

* For our case, we want to map the velocity of the robot v to wheel rotation, specified as angular
velocities w! fori = 1,2,3.

The desired relationship is given by: .
a)z _; [Ux]
a)3 v,

We’ll need to relate rotation of the wheel to translation in the driving direction.

Rolling Without Slipping

Suppose a wheel rolls without slipping a linear distance x.

y Because the wheel rolls without
slipping, the linear distance x
travelled by the wheel center is
equal to the length of the section £.

\\

»

v

X

Rolling Without Slipping

Using basic geometry, we know that x = £ = 6.

Differentiating both sides, we

obtain
d d

V=—X = = 1 — =
T X L rdtH T'w

and therefore,

W ==—7
r

Mapping Robot Velocity to Wheel Rotation

Combining these results, we obtain our final, Jacobian relationship:

vj = —v, sin ' + v, cos 6" o'l 1[-sin8' cos®'] 4,
- - o 2| = 2| _ i 2 2
v} = v, cos ' + v, sin 6" w”| =Z|—sinf” coso [v]
3 _ cin A3 3|~
W sinf° cosf

J —
W = n U”
This is the Jacobian matrix, J

w’ 1 0 1 v
7] <2[-0sse —os|i
w3 0866 —051 "7

Discrete Time Motion Model

* The control input for our robot is a linear velocity v (which is converted to angular velocities for each
wheel).

* We could model the motion of the robot using a differential equation: x = f(x, u)
X Ux
[5’] - [vy]

* It’s much simpler to use a discrete time model for the position of the robot:

xt+1] _ [xt + vaT] _ [Xt + ux]
Yt+1 Ve + U, AT Vi T Uy

* If the motion of the robot happened to be deterministic and error-free, this would be all we need.

 We’ll assume that the motion model is stochastic, and show how to model uncertainty using
continuous probability density functions.

Limitations of our Model

The model we developed for omni-wheeled robots made several simplifications to what we
might find in real applications:

* We conveniently aligned the robot’s coordinate system to a global world coordinate frame.

Specifying the angle 8' was simple, because it was specified in a coordinate frame that was
fixed w.r.t. to the robot.

* Real robots sometimes rotate. We could accomplish this with the exact same robot by adding
a rotational component to the robot velocity (i.e., robot angular velocity):

robot

v =|w Vy vy]T

* |f the robot rotates, then we’ll need to represent its orientation w.r.t. the global coordinate
frame, since the steering directions of the wheels will change if the robot rotates.

Mecanum Wheels

* We can make the wheels a bit more interesting by changing the orientation of the “roller” wheels that allow
sliding — Mecanum Wheels.

* The math is (only) slightly more complex, but we won’t go further in this course.

