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Lecture 10: 
Markov Decision 
Processes



Lecture 9 Recap



Factor Graphs

• Measurements are given – get rid of them!

• This becomes:

𝑋! 𝑋" 𝑋#𝑋! 𝑋" 𝑋#

𝑍! 𝑍" 𝑍#

Each factor defines a function 𝝓 which is a function only of its (non-factor node) neighbors.



MPE via max-product
• Eliminate one variable at a time by forming product, then max:



Posterior via sum-product:
• Eliminate one variable at a time by forming product, then sum:



Markov 
Decision 
Processes

• Planning is the process of choosing which actions to 
perform.
• In order to plan effectively, we need quantitative 

criteria to evaluate actions and their effects.
• MDPs include a reward function that characterizes 

the immediate benefit of applying an action.
• Policies describe how to act in a given state.
• The value function characterizes the long-term 

benefits of a policy.
• We assume that the robot is able to know its current 

state with certainty.

Ø We will see how to define reward functions and use 
these to compute optimal policies for MDPs.



Reward Functions
• Most general form depends on current 

state, action, and next state: 
𝑅:𝒳×𝒜×𝒳 → ℝ

• In our example, we just care about 
where we end up after taking an action:



Expected Reward
• A greedy way to act would be to calculate the immediate expected reward 

for every possible action:

)𝑹 𝒙, 𝒂 = 𝑬 𝑹(𝒙, 𝒂, 𝑿′)

• Since we know the transition probabilities, we can easily compute this:

• We then have a simple greedy planning algorithm:



Example

• The expected immediate reward for all 
four actions in the Kitchen:

• Hence, when in the kitchen, always do L !
• This is a greedy planning algorithm



Utility

𝑈:𝒜#×𝒳#$% → ℝ

𝑈 𝑎%,… , 𝑎#, 𝑥%, … 𝑥#$% = 𝑅 𝑥%, 𝑎%, 𝑥' + 𝛾𝑅 𝑥', 𝑎', 𝑥( +⋯𝛾#)%𝑅(𝑥#, 𝑎#, 𝑥#$%)

• Because actions are uncertain, let’s look 
further into the future!
• Introduce a discount factor 𝛾 to
• still bias towards more immediate payoff;
• allow infinite time horizons:

𝑈 𝑎%,… , 𝑎#, 𝑥%, … 𝑥#$% =;
*+%

,

𝛾*)%𝑅(𝑥*, 𝑎*, 𝑥*$%)



Expected Utility

E 𝑈 𝑎%,… , 𝑎#, 𝑥%, 𝑋', …𝑋#$% = E 𝑅 𝑥%, 𝑎%, 𝑋' + 𝛾𝑅 𝑋', 𝑎', 𝑋( +⋯𝛾#)%𝑅(𝑋#, 𝑎#, 𝑋#$%)

• Again, we can compute the expectation to choose between 
finite horizon plans
• For n=3, we have 4! = 64 possible plans, and for each plan 

we must evaluate 5" = 625 possible state sequences
• An approximate algorithm to evaluate a given plan:
• Simulate multiple rollouts
• Average the result

• Still expensive, only practical for short horizon plans…



Policies 𝜋:𝒳 → 𝒜

• 𝜋 𝐿 =
• 𝜋 𝐾 =
• 𝜋 𝑂 =
• 𝜋 𝐻 =
• 𝜋 𝐷 =

• Because actions are non-deterministic, fixed plans 
are brittle and prone to failure.
• Better to have a state-dependent plan
• A policy 𝜋 𝑋 is a function that specifies which 

action to take in each state.
• Let us come up with a policy together:



The Value Function for a Policy
• Recall the Expected Utility

)𝑈 𝑎#…𝑎$ , 𝑥# = 𝐸 0
%&#

$

𝛾%'#𝑅(𝑋% , 𝑎% , 𝑋%(#)

• For a policy, we can define this similarly:

)𝑈 𝜋, 𝑛, 𝑥% ≐ 𝐸 𝑅 𝑥%, 𝜋 𝑥% , 𝑋' + 𝛾 𝑅 𝑋', 𝜋 𝑋' , 𝑋( +⋯+ 𝛾'𝑅 𝑋#, 𝜋 𝑋# , 𝑋#

• Can	be	extended	to	infinite	horizon	policy,	defining	the	value	function:

𝑉-(𝑥%) ≐ 𝐸 𝑅 𝑥%, 𝜋 𝑥% , 𝑋' + 𝛾 𝑅 𝑋', 𝜋 𝑋' , 𝑋( + 𝛾'𝑅 𝑋(, 𝜋 𝑋( , 𝑋. +⋯

• Of course, above holds for arbitrary 𝑥/, not just 𝑥%.



Recursive Definition of 𝑉!
𝑉! 𝑥" = 𝐸 𝑅 𝑥", 𝜋 𝑥" , 𝑋# + 𝛾𝑅 𝑋#, 𝜋 𝑋# , 𝑋$ + 𝛾#𝑅 𝑋$, 𝜋 𝑋$ , 𝑋% + …

𝑉! 𝑥" =4
&!

𝑃(𝑥#|𝑥", 𝜋 𝑥" ) 𝑅 𝑥", 𝜋 𝑥" , 𝑥# + 𝛾𝐸 𝑅 𝑥#, 𝜋 𝑥# , 𝑋$ + 𝛾𝑅 𝑋$, 𝜋 𝑋$ , 𝑋% + …

𝑉! 𝑥" =4
&!

𝑃(𝑥#|𝑥", 𝜋 𝑥" ) 𝑅 𝑥", 𝜋 𝑥" , 𝑥# + 𝛾𝑉! 𝑥#

𝑉! 𝑥" =4
&!

𝑃(𝑥#|𝑥", 𝜋 𝑥" )𝑅 𝑥", 𝜋 𝑥" , 𝑥# + 𝛾4
&!

𝑃(𝑥#|𝑥", 𝜋(𝑥"))𝑉! 𝑥#

𝑉! 𝑥 = 9𝑅(𝑥, 𝜋 𝑥 ) + 𝛾4
&"
𝑃(𝑥′|𝑥, 𝜋(𝑥))𝑉! 𝑥′



Exact Computation for 𝑉!
• Because we have a finite set of states, we get 5 

linear equations in 5 unknowns 𝑉; 𝑥 :

𝑉; 𝑥 = 5𝑅(𝑥, 𝜋 𝑥 ) + 𝛾0
<!
𝑃(𝑥′|𝑥, 𝜋(𝑥))𝑉; 𝑥′

• Can be solved efficiently with np.linalg.solve
• Example in book:



Policy Iteration

𝝅𝒌$𝟏 𝒙 ← 𝒂𝒓𝒈𝒎𝒂𝒙
𝒂

)𝑹(𝒙, 𝒂) + 𝜸;
𝒙!
𝑷(𝒙′|𝒙, 𝒂))𝑽𝝅𝒌 𝒙′

Start with a random policy 𝜋=, and repeat until convergence:

1. Compute the value function 𝑉;"

2. Improve the policy for each state 𝑥 using the update rule:



Optimal Value Function
The	optimal	value	function	is	the	one	corresponding	to	the	optimal	policy:

𝑉∗ 𝑥 = max
-

𝑉- 𝑥

= max
-

i𝑅(𝑥, 𝜋 𝑥 ) + 𝛾;
6!
𝑃(𝑥′|𝑥, 𝜋(𝑥))𝑉- 𝑥′

= max
7

i𝑅(𝑥, 𝑎) + 𝛾;
6!
𝑃(𝑥′|𝑥, 𝑎))𝑉∗ 𝑥′

The Bellman equation:

𝑽∗ 𝒙 = 𝒎𝒂𝒙
𝒂

)𝑹(𝒙, 𝒂) + 𝜸;
𝒙!
𝑷(𝒙′|𝒙, 𝒂))𝑽∗ 𝒙′



Value Iteration

𝑽𝒌$𝟏 𝒙 ← 𝒎𝒂𝒙
𝒂

)𝑹(𝒙, 𝒂) + 𝜸;
𝒙!
𝑷(𝒙′|𝒙, 𝒂))𝑽𝒌 𝒙′

Start with a random value function 𝑉=, and repeat until convergence:
• Improve the value function 𝑉> using the update rule:



Optimal Policy
Given the 𝑽∗ 𝒙 , computing the optimal policy is a straightforward optimization:

𝝅∗ 𝒙 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒂

)𝑹(𝒙, 𝒂) + 𝜸;
𝒙!
𝑷(𝒙′|𝒙, 𝒂))𝑽∗ 𝒙′

For convenience, we define the 𝑸∗ function as

𝑸∗ 𝒙, 𝒂 = )𝑹(𝒙, 𝒂) + 𝜸;
𝒙!
𝑷(𝒙′|𝒙, 𝒂))𝑽𝝅 𝒙′

and we can write the optimal policy as:

𝝅∗ 𝒙 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒂

𝑸∗(𝒙, 𝒂)

The Q function plays a role in reinforcement learning, to be continued…


