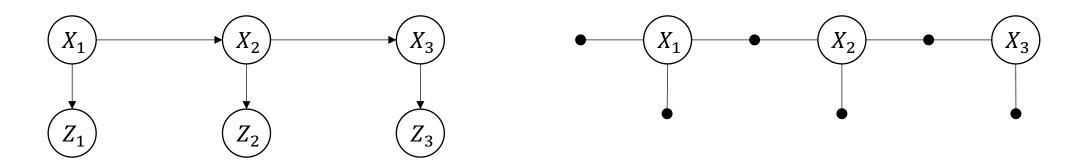


Lecture 10: Markov Decision Processes

Lecture 9 Recap

Factor Graphs



• Measurements are given – get rid of them!

 $P(\mathcal{X}|\mathcal{Z}) \propto P(X_1)L(X_1; z_1)P(X_2|X_1)L(X_2; z_2)P(X_3|X_2)L(X_3; z_3)$

• This becomes:

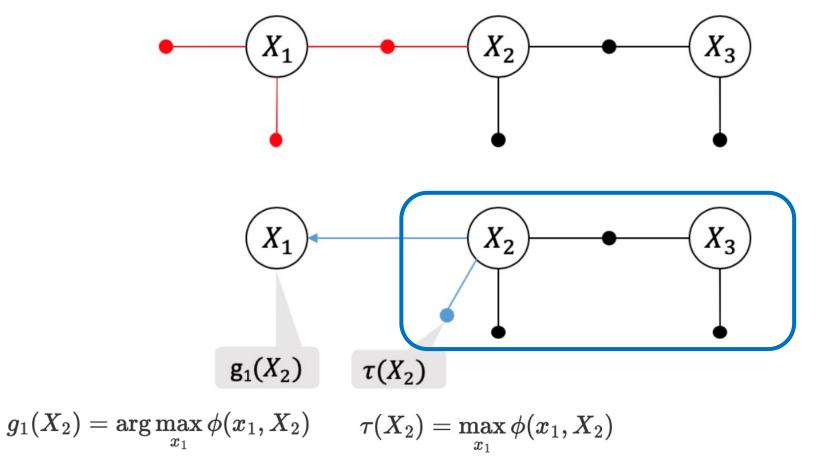
 $\phi(\mathcal{X}) = \phi_1(X_1)\phi_2(X_1)\phi_3(X_1, X_2)\phi_4(X_2)\phi_5(X_2, X_3)\phi_6(X_3)$

Each factor defines a function ϕ which is a function only of its (non-factor node) neighbors.

MPE via max-product

• Eliminate one variable at a time by forming product, then max:

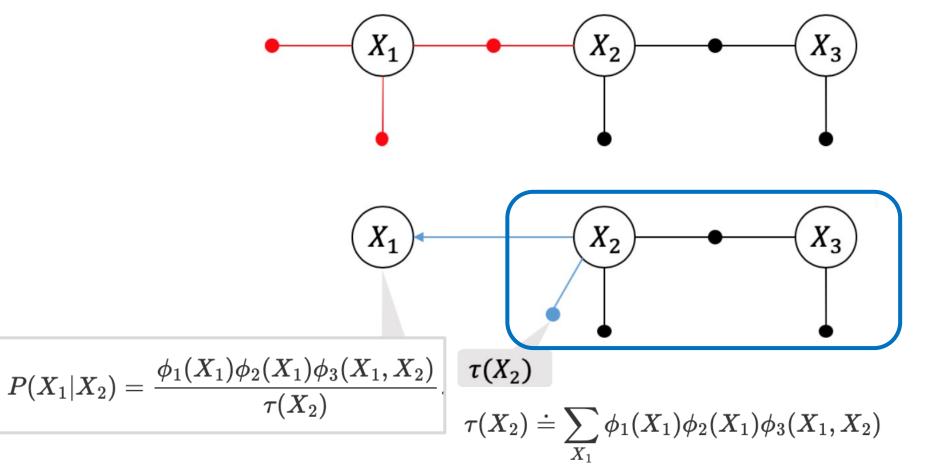
 $\phi(X_1,X_2)=\phi_1(X_1)\phi_2(X_1)\phi_3(X_1,X_2)$.



Posterior via sum-product:

• Eliminate one variable at a time by forming product, then sum:

 $\phi(X_1,X_2)=\phi_1(X_1)\phi_2(X_1)\phi_3(X_1,X_2)$.



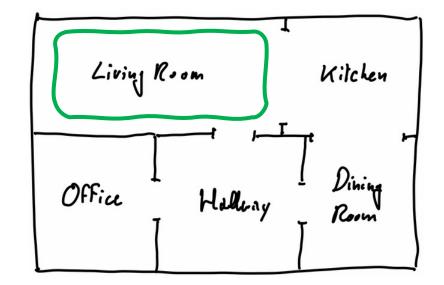
Markov Decision Processes

- Planning is the process of choosing which actions to perform.
- In order to plan effectively, we need quantitative criteria to evaluate actions and their effects.
- MDPs include a reward function that characterizes the immediate benefit of applying an action.
- Policies describe how to act in a given state.
- The value function characterizes the long-term benefits of a policy.
- We assume that the robot is able to *know* its current state with certainty.

We will see how to define reward functions and use these to compute optimal policies for MDPs.

Reward Functions

- Most general form depends on current state, action, and next state: $R: \mathcal{X} \times \mathcal{A} \times \mathcal{X} \rightarrow \mathbb{R}$
- In our example, we just care about where we end up after taking an action:



```
def reward_function(state:int, action:int, next_state:int):
    """Reward that returns 10 upon entering the living room."""
    return 10.0 if next_state == "Living Room" else 0.0
print(reward_function("Kitchen", "L", "Living Room"))
print(reward_function("Kitchen", "L", "Kitchen"))
```

Expected Reward

• A greedy way to act would be to calculate the immediate expected reward for every possible action:

$$\overline{R}(x,a) = E[R(x,a,X')]$$

• Since we know the transition probabilities, we can easily compute this:

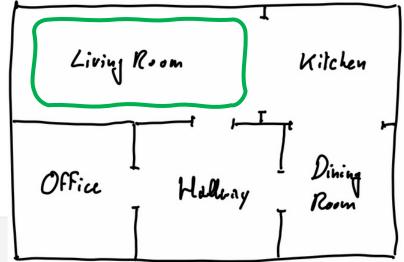
$$ar{R}(x,a)\doteq E[R(x,a,X')]=\sum_{x'}P(x'|x,a)R(x,a,x')$$

• We then have a simple **greedy planning** algorithm:

$$a^* = rg\max_{a \in \mathcal{A}} E[R(X_t, a, X_{t+t})]$$

Example

• The expected immediate reward for all four actions in the Kitchen:



Expected reward (Kitchen, R) = 0.0Expected reward (Kitchen, U) = 0.0Expected reward (Kitchen, D) = 0.0

- Hence, when in the kitchen, always do L !
- This is a greedy planning algorithm

Utility

$U:\mathcal{A}^n{\times}\mathcal{X}^{n+1}\to\mathbb{R}$

 $U(a_{1,} \dots, a_{n}, x_{1}, \dots, x_{n+1}) = R(x_{1}, a_{1}, x_{2}) + \gamma R(x_{2}, a_{2}, x_{3}) + \dots \gamma^{n-1} R(x_{n}, a_{n}, x_{n+1})$

- Because actions are uncertain, let's look further into the future!
- Introduce a discount factor γ to
 - still bias towards more immediate payoff;
 - allow infinite time horizons:

$$U(a_{1,}...,a_{n},x_{1},...x_{n+1}) = \sum_{i=1}^{\infty} \gamma^{i-1}R(x_{i},a_{i},x_{i+1})$$

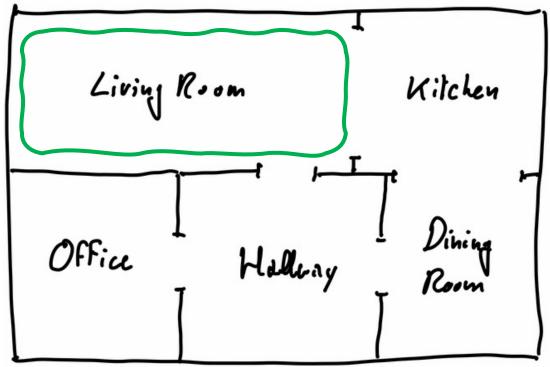
Expected Utility

 $\mathsf{E}[U(a_{1,}\dots,a_{n},x_{1},X_{2},\dots,X_{n+1})] = \mathsf{E}[R(x_{1},a_{1},X_{2}) + \gamma R(X_{2},a_{2},X_{3}) + \dots \gamma^{n-1}R(X_{n},a_{n},X_{n+1})]$

- Again, we can compute the expectation to choose between finite horizon plans
- For n=3, we have $4^3 = 64$ possible plans, and for each plan we must evaluate $5^4 = 625$ possible state sequences
- An approximate algorithm to evaluate a given plan:
 - Simulate multiple rollouts
 - Average the result
- Still expensive, only practical for short horizon plans...

Policies $\pi: \mathcal{X} \to \mathcal{A}$

- Because actions are non-deterministic, fixed plans are brittle and prone to failure.
- Better to have a state-dependent plan
- A policy $\pi(X)$ is a function that specifies which action to take in each state.
- Let us come up with a policy together:
 - $\pi(L) =$
 - $\pi(K) =$
 - $\pi(0) =$
 - $\pi(H) =$
 - $\pi(D) =$



The Value Function for a Policy

• Recall the Expected Utility

$$\overline{U}(a_1 \dots a_n, x_1) = E\left[\sum_{i=1}^n \gamma^{i-1} R(X_i, a_i, X_{i+1})\right]$$

• For a policy, we can define this similarly:

 $\overline{U}(\pi, n, x_1) \doteq E\left[R(x_1, \pi(x_1), X_2) + \gamma R(X_2, \pi(X_2), X_3) + \dots + \gamma^2 R(X_n, \pi(X_n), X_n)\right]$

• Can be extended to infinite horizon policy, defining the value function:

 $V^{\pi}(x_1) \doteq E\left[R(x_1, \pi(x_1), X_2) + \gamma R(X_2, \pi(X_2), X_3) + \gamma^2 R(X_3, \pi(X_3), X_4) + \cdots\right]$

• Of course, above holds for arbitrary x_t , not just x_1 .

Recursive Definition of V^{π}

 $V^{\pi}(x_1) = E[R(x_1, \pi(x_1), X_2) + \gamma R(X_2, \pi(X_2), X_3) + \gamma^2 R(X_3, \pi(X_3), X_4) + \dots]$

 $V^{\pi}(x_1) = \sum_{x_2} P(x_2 | x_1, \pi(x_1)) \{ R(x_1, \pi(x_1), x_2) + \gamma E[R(x_2, \pi(x_2), X_3) + \gamma R(X_3, \pi(X_3), X_4) + \dots] \}$

$$V^{\pi}(x_1) = \sum_{x_2} P(x_2 | x_1, \pi(x_1)) \{ R(x_1, \pi(x_1), x_2) + \gamma V^{\pi}(x_2) \}$$

$$V^{\pi}(x_1) = \sum_{x_2} P(x_2|x_1, \pi(x_1)) R(x_1, \pi(x_1), x_2) + \gamma \sum_{x_2} P(x_2|x_1, \pi(x_1)) V^{\pi}(x_2)$$

$$V^{\pi}(x) = \bar{R}(x, \pi(x)) + \gamma \sum_{x'} P(x'|x, \pi(x)) V^{\pi}(x')$$

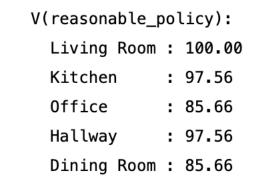
Exact Computation for V^{π}

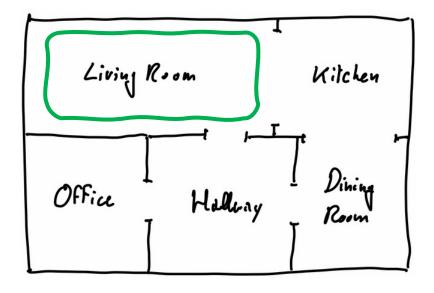
• Because we have a finite set of states, we get 5 linear equations in 5 unknowns $V^{\pi}(x)$:

$$V^{\pi}(x) = \bar{R}(x, \pi(x)) + \gamma \sum_{x'} P(x'|x, \pi(x)) V^{\pi}(x')$$

- Can be solved efficiently with *np.linalg.solve*
- Example in book:

reasona	able_po	licy =	UP,	LEFT,	RIGHT,	UP,	LEFT]	
[[0.1	-0.	-0.	-0.	-0.]	[[1	0.]	
[-0.72	0.82	-0.	-0.	-0.]	[8.]	
[-0.	-0.	0.82	-0.72	-0.]	[0.]	
[-0.72	-0.	-0.	0.82	-0.]	[8.]	
[-0.	-0.	-0.	-0.72	0.82	2]]	[0.]]	





Policy Iteration

Start with a random policy π^0 , and repeat until convergence:

- 1. Compute the value function V^{π^k}
- 2. Improve the policy for each state *x* using the update rule:

$$\pi^{k+1}(x) \leftarrow \arg\max_{a} \left\{ \overline{R}(x,a) + \gamma \sum_{x'} P(x'|x,a) \right\} V^{\pi^{k}}(x')$$

optimal_policy, optimal_value_function = policy_iteration(always_right)
print([vacuum.action_space[a] for a in optimal_policy])

√ 0.7s

['L', 'L', 'R', 'U', 'U']

Optimal Value Function

The optimal value function is the one corresponding to the optimal policy:

$$V^{*}(x) = \max_{\pi} V^{\pi}(x)$$

= $\max_{\pi} \left\{ \bar{R}(x, \pi(x)) + \gamma \sum_{x'} P(x'|x, \pi(x)) V^{\pi}(x') \right\}$
= $\max_{a} \left\{ \bar{R}(x, a) + \gamma \sum_{x'} P(x'|x, a)) V^{*}(x') \right\}$

The Bellman equation:

$$V^*(x) = \max_a \left\{ \overline{R}(x,a) + \gamma \sum_{x'} P(x'|x,a) \right\} V^*(x')$$

Value Iteration

Start with a random value function V^0 , and repeat until convergence:

• Improve the value function V^k using the update rule:

$$\boldsymbol{V^{k+1}(x)} \leftarrow \max_{a} \left\{ \overline{R}(x,a) + \gamma \sum_{x'} P(x'|x,a) \right\}$$

```
V_k = np.full((5,), 100)
for k in range(10):
    Q_k = np.sum(T * (R + 0.9 * V_k), axis=2) # 5 x 4
    V_k = np.max(Q_k, axis=1) # max over actions
    print(np.round(V_k,2))
```

√ 0.4s

[100.	98.	90.	98.	90.]	
[100.	97	.64	86.76	97.64	86.76]
[100.	97	. 58	85.92	97.58	85.92]
[100.	97	.56	85.72	97.56	85.72]

Optimal Policy

Given the $V^*(x)$, computing the optimal policy is a straightforward optimization:

$$\pi^*(x) = \arg\max_a \left\{ \overline{R}(x,a) + \gamma \sum_{x'} P(x'|x,a) \right\}$$

For convenience, we define the Q^* function as

$$Q^*(x,a) = \overline{R}(x,a) + \gamma \sum_{x'} P(x'|x,a)) V^{\pi}(x')$$

and we can write the optimal policy as:

$$\pi^*(x) = \arg\max_a Q^*(x,a)$$

The Q function plays a role in reinforcement learning, to be continued...