-
o
O
o
Yy
O

Lecture 10

I1sion

Markov Dec
Processes




Lecture 9 Recap




Factor Graphs

Xl @ § >—? | /\? | ?

* Measurements are given — get rid of them!

P(X|Z) o P(X;)L(X1; 21) P(X32|X1) L(X3; 29) P(X3| X2)L(X3; 23)

* This becomes:
O(X) = 01(X1)d2(X1)d3( X1, X2)da(X2)p5( X2, X3)6(X3)

Each factor defines a function ¢ which is a function only of its (non-factor node) neighbors.



MPE via max-product

* Eliminate one variable at a time by forming product, then max:

(X1, X2) = ¢1(X1)d2(X1)d3(X1, X2)
(x,)
\\f/

r D
J T
N y

gl(XZ) T(Xz)
91(X2) = argn}calmxcb(:vl,Xg) T(X2) = max ¢(z1, X2)




Posterior via sum-product:

* Eliminate one variable at a time by forming product, then sum:

(X1, X2) = ¢1(X1)d2(X1)ds3(X1, X2)

X1 ®

‘,

"o —e

\

¢1(X1)¢2(X1)¢3(X1,X2)' 7(X3)
T(X2) (X2) = 3 61(X1)a(X1)ba( X, X2)

1

P(X,|X3) =

b



* Planning is the process of choosing which actions to
perform.

* In order to plan effectively, we need quantitative
criteria to evaluate actions and their effects.

k e MDPs include a reward function that characterizes
dI'KOV the immediate benefit of applying an action.

ECiSiO N * Policies describe how to act in a given state.

* The value function characterizes the long-term
benefits of a policy.

rOCESSEeS

 We assume that the robot is able to know its current
state with certainty.

» We will see how to define reward functions and use
these to compute optimal policies for MDPs.




Reward Functions

* Most general form depends on current
state, action, and next state:

R: XXAXX - R

* In our example, we just care about
where we end up after taking an action:

def reward function(state:int, action:int, next _state:int):
"""Reward that returns 10 upon entering the living room.
"Living Room" else 0.0

return 10.0 if next_state ==

3

d

( Lfviu\l 12+ 6m J Uilchen

OfFice

[ 7T

|

Halla,

: D.a,;.,q

[

n

print(reward_function("Kitchen", "L", "Living Room"))
print(reward_function("Kitchen", "L", "Kitchen"))

10.0
0.0




Expected Reward

* A greedy way to act would be to calculate the immediate expected reward
for every possible action:

R(x,a) = E[R(x,a,X")]
* Since we know the transition probabilities, we can easily compute this:
R(z,a) = E[R(z,a,X")] ZP '|z,a)R(z,a,z")
* We then have a simple greedy planning algorithm:

a® = arg majc E|R(X:,a, X¢y4)]
ac



Example

* The expected immediate reward for all
four actions in the Kitchen:

X = vacuum.rooms.index("Kitchen")
for a in range(4):

i

d

( L;v;“\l 12+ 6m J Uilchen

[ 7T

Office Hallya g ) D{h;‘q

] =

print(f"Expected reward ({vacuum.rooms([x]}, {vacuum.action_spacelal}) = {T[x,al @ R[x,al}")

v/ 09s

Expected reward (Kitchen, L) = 8.0
Expected reward (Kitchen, R) = 0.0
Expected reward (Kitchen, U) = 0.0
Expected reward (Kitchen, D) = 0.0

* Hence, when in the kitchen, always do L !
* This is a greedy planning algorithm




Utility
U: A'XX™1 S5 R

U(al, ey Apy X1y oo X1 ) — R(xl' ai, xZ) + )/R (.’X,'z, aj, Xg) + - yn_lR(xn; An, xn+1)

e Because actions are uncertain, let’s look
further into the future!

* Introduce a discount factor y to
e still bias towards more immediate payoff;
* allow infinite time horizons:

00
U(al, ey Ay X1y oo X1 ) = z yl_lR(xiJ ai, xi+1)
=1



Expected Utility

E[U(Cll, ey Ap, xl,Xz, "'XTL+1)] = E[R(xl, al,Xz) + )/R(Xz, az,Xg) + "']/n_lR(Xn, an,Xn_|_1) ]

* Again, we can compute the expectation to choose between
finite horizon plans

* For n=3, we have 43 = 64 possible plans, and for each plan
we must evaluate 5% = 625 possible state sequences

* An approximate algorithm to evaluate a given plan:
* Simulate multiple rollouts
* Average the result

e Still expensive, only practical for short horizon plans...



Policiest: X —» A

* Because actions are non-deterministic, fixed plans
are brittle and prone to failure.

* Better to have a state-dependent plan

* A policy m(X) is a function that specifies which
action to take in each state.

* Let us come up with a policy together: rf’ Nl
[.fw'u\l s om Uilchew

s (L) = — y,
- (K) = 1 — A—LT
» 1(0) = L D
e T(H) = Office Hd-aw\y ::1
e 7(D) =

(D) i ] [




The Value Function for a Policy

* Recall the Expected Utility

. _
U(ay ...an,x,) = E zyi_lR(Xi'ai»XHl)
Li=1 i

* For a policy, we can define this similarly:

U(r,n,x1) = E [R(xq, m(x1),X5) + ¥ R(Xp, m(X3), X3) + - + y*R(Xp, m(Xy), X)]

* Can be extended to infinite horizon policy, defining the value function:

V™(x1) = E [R(x1,m(x1), X2) + ¥ R(Xp, m(X3), X3) + y*R(X3,w(X3), Xy) + -]

* Of course, above holds for arbitrary x;, not just x;.



Recursive Definition of V™

Vn(xl) = E[R(xlln(xl)iXZ) + )/R(Xz,T[(Xz),Xg) + ]/ZR(X3,7T(X3),X4) + ]

V*(xy) = z P (oy |y, (e IR (g, m(x1), x2) + YE[R (x5, m(x3), X3) + YR(X3, m(X3), Xy) + ... ]}

X2

VTGe) = ) POy, ) R G, m(), %) + ¥V ()

VTCr) = D P, )R, m(), %) +7 ) P, 70 )V ()

V() = RGem()) +y ) PO )V ()



Exact Computation for V™

* Because we have a finite set of states, we get 5 i

linear equations in 5 unknowns V™ (x):

d

V() = RGe,m(0) +v ) PO/ 1% mG)V ()

* Can be solved efficiently with np.linalg.solve

( Liviu\] Ko om J Uilchen
[

OfFice

C T

T

[

n

=

* Example in book:

reasonable_policy = [UP, LEFT, RIGHT, UP, LEFT]

V(reasonable_policy):

[[ 2.1 -0. -0. -0. -0. ] [[10.] Living Room :
[-0.72 0.82 -0. -0. -0. ] [ 8.] Kitchen
[-0. -o0. 0.82 -0.72 -0. ] [ 0.] [:::::::::t>» 0ffice
[-0.72 -0. -O. 0.82 -0. ] [ 8.] Hallway
[-0. -0. -0. -0.72 0.82]] [ 0.1]

Dining Room :

100.00
: 97.56
: 85.66
: 97.56
85.66



Policy Iteration

Start with a random policy %, and repeat until convergence:

, k
1. Compute the value function V'™
2. Improve the policy for each state x using the update rule:

1 (x) « arg max{R(x,a) + yz: P(x'|x, a))V”k(x')
a v

always_right = [RIGHT, RIGHT, RIGHT, RIGHT, RIGHT]
v/ 0.7s

optimal_policy, optimal_value_function = policy_iteration(always_right)
print([vacuum.action_space[al for a in optimal_policy])

v/ 0.7s




Optimal Value Function

The optimal value function is the one corresponding to the optimal policy:
V*(x) = max V™ (x)

= max {R(x m(x)) + yz P(x'|x, t(x)V™(x' )}

= max{R(x a) +yz P(x'|x,a))V*(x' )}

The Bellman equation:

V*(x) = max {I_I(x, a) + yZ P(x'|x, a))V*(x’)}




Value |teration

Start with a random value function V°, and repeat until convergence:

* Improve the value function V¥ using the update rule:
VEtl(x) « max{R(x, a) + yz P(x'|x,a))VE(x"
a
xl

V. k = np-Tull({(5,), 100)

for k in range(10):
Q_k = np.sum(T x (R + 0.9 % V_k), axis=2) # 5 x 4
V_k = np.max(Q_k, axis=1) # max over actions
print(np.round(V_k,2))

v/ 0.4s

[100. 98. 90. 98. 90.]

[100. 97.64 86.76 97.64 86.76]
[100. 97.58 85.92 97.58 85.92]
[100. 97.56 85.72 97.56 85.72]



Optimal Policy

Given the V*(x), computing the optimal policy is a straightforward optimization:

' (x) = arg max {I_?(x, a) + yz: P(x'|x, a))V*(x')}

For convenience, we define the Q™ function as

Q' (x.@) =R(x,a) +7 ) P(x|xa)V(x)
xl
and we can write the optimal policy as:

n'(x) = argmaxQ*(x,a)

The Q function plays a role in reinforcement learning, to be continued...



