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This note introduces kinematic constraints and forces at contacts in a unified
manner across SO(2), SO(3), SE(2), and SE(3) by using Lie group concepts.
Further references (albeit all using slightly different notation from this note and
each other) are the texts by Murray, Li, and Sastry [3], Matt Mason [2] and most
recently, the excellent synthesis by Lynch and Park [1].

A word about notation: Suppose Ω and v are 3-vectors, and ξ̇ a 6-vector, then
I might write ξ̇ in two different ways, depending on whether we mention it in the
text, such as ξ̇ = (x, y), or in a display formula, such as

ξ̇ =

[
Ω
v

]
Mathematically, we think of ξ̇ as a column vector, but the (.) notation helps us by
not having to always write transposes all over that clutter the notation, i.e., we have
ξ̇ = (Ω, v) =

[
ΩT vT

]T .

1 Kinematic Constraints

At a contact with location pS and contact normal n̄, in some spatial frame S, we
have a very simple constraint on the spatial velocity vS at that point,

vSn̄ ≥ 0 (1.1)

which is true in 2D and 3D. Below we show what that means for rotating bodies in
2D and 3D, and subsequently for rigidly moving bodies in 2D and 3D.

In each case, we proceed by expressing the spatial velocity vS in terms of
differential twist coordinates, and then deriving a constraint on those in terms of
the contact parameters pS and n̄.

1



1.1 Planar Rotations aka SO(2)

Figure 1.1: Left: contact constraining this object from rotating. Right: moment m
of the contact normal is negative (clockwise) in the situation above.

Consider the situation in Figure 1.1, with contact blocking the rotation of the
asteroid-like object from rotating. From the figure it is obvious that we will only be
able to rotate clock-wise, away from the contact. Let us formalize this with math.

For 2D rotations, the point pS describes a circular trajectory around the origin.
The velocity vS , in spatial coordinates, is given by

vS = ω̂pS = ωpS⊥ (1.2)

where ω is the 1-dimensional angular velocity, and ω̂ ∈ so(2) is given by

ω̂
∆
=

[
0 −ω
ω 0

]
.

Given this, the kinematic constraint (1.1) becomes

vSn̄ ≥ 0

ω̂pSn̄ ≥ 0

ω
(
pS⊥n̄

)
≥ 0

ωm ≥ 0
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Figure 1.2: Left: Contact constraining this object from rotating. Right: moment m
of the contact normal is negative in this case.

where m ∆
= pS⊥n̄ is defined as the moment of the contact line through the contact

point pS . This moment quantity m is illustrated on the left of Figure 1.1.
The angular velocity ω is constrained to be either positive or negative, as illus-

trated in Figure 1.2.

Figure 1.3: Left: Contact constraining this object from rotating. Right: moment m
of the contact normal is negative in this case.

The exception occurs when the contact normal n̄ is parallel to pS , in which
case we have a sliding contact if ω 6= 0. This is illustrated in Figure 1.3.
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1.2 Rotations in 3D aka SO(3)

For 3D rotations, the spatial velocity vS of a point pS is given by:

vS = Ω̂pS = Ω× pS

where Ω is the angular velocity vector and Ω̂ ∈ so(3) is given by:

Ω̂
∆
=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .
Given this, the kinematic constraint (1.1) becomes

vSn̄ ≥ 0

Ω̂pSn̄ ≥ 0(
Ω× pS

)
n̄ ≥ 0

Ω
(
pS × n̄

)
≥ 0

Ωm ≥ 0

wherem ∆
= pS× n̄ is defined as the moment vector of the contact line through the

contact point pS . The angular velocity vector Ω is constrained to be on the positive
side of the plane with normal m, unless the contact normal n̄ is parallel to pS , in
which case we have a sliding contact with non-zero Ω.
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1.3 2D Rigid Transforms aka SE(2)

For 2D rigid transforms, the spatial velocity is given by

vS =
ˆ̇
ξpS = ωpS⊥ + v

where the 2D differential twist ˆ̇
ξ ∈ se(2) is given by

ˆ̇
ξ =

[
ω̂ v
0 0

]
.

Given this, the kinematic constraint (1.1) becomes

vSn̄ ≥ 0

ˆ̇
ξpSn̄ ≥ 0(

ωpS⊥ + v
)
n̄ ≥ 0

(m, n̄)T (ω, v) ≥ 0

where (m, n̄) = (pS⊥n̄, n̄) defines the contact line, through the equation q⊥n̄ =
m. The 3D twist coordinates ξ = (ω, v) are constrained to be on the positive side
of the plane in 3D, with normal (m, n̄). A sliding contact occurs when the twist
coordinates ξ are in the plane and vS 6= 0. A rolling contact, defined as having
the spatial velocity vS equal to zero for a non-zero twist, only occurs when the
instantaneous rotation center vS⊥/ω is equal to pS :

ωpS⊥ + v = 0

−ωpS + v⊥ = 0

v⊥/ω = pS

Reuleaux’ method is a great way to graph all possible IRCs in the plane: posi-
tive IRCs are possible to the left of the contact line, and negative to the right, both
corresponding to Breaking contact. On the line, we have either Sliding, or Rolling
(at the contact point). Sliding can further be subdivided in left or right sliding.
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1.4 3D Rigid transforms aka SE(3)

For 3D rigid transforms, the spatial velocity is given by

vS =
ˆ̇
ξpS = Ω× pS + v

where the 3D differential twist ˆ̇
ξ ∈ se(3) is given by

ˆ̇
ξ =

[
Ω̂ v
0 0

]
.

Given this, the kinematic constraint (1.1) becomes

vSn̄ ≥ 0

ˆ̇
ξpSn̄ ≥ 0(

Ω× pS + v
)
n̄ ≥ 0

(m, n̄)T (Ω, v) ≥ 0

where (m, n̄) = (ps× n̄, n̄) defines the contact line, through the equation q× n̄ =
m. The 6-dimensional vectors (m, n̄) to represent lines in 3D are also known
as the Plücker coordinates of a 3D line. The twist coordinates ξ = (Ω, v)
are constrained to be on the positive side of the hyperplane in 6D with equation
(m, n̄)T ξ = 0. A sliding contact occurs when the twist coordinates ξ are in the
plane and vS 6= 0. A rolling contact occurs when ξ 6= 0 and

vS = Ω× pS + v = 0.

The intuition I can offer is this: in all 4 cases, some properties of the contact
line determine the constraint (breaking contact, sliding, or disallowed). Looking in
hindsight, the Plücker coordinates (note spelling!) determine the line by a moment
and direction. When looking at rotation, only the *moment* of the line matters.
When upgrading to Euclidean transforms, the exact direction of the line also mat-
ters.
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2 Friction

The above was a kinematic account. To discuss frictional contacts and force closure
we closely follow Murray et al [3], modulo some notation differences. In particular,
we will arrive at the following concise result: the set FB of possible wrenches
applied to the body B is given by

FB = {Gf |f ∈ FC}

where G is the n ×m grasp map, and f ∈ Rm are set of possible forces, which
lie inside a friction cone FC.

To see this, we will classify each of k contacts into different contact types, and
for each contact ci we model the contacts in their contact frame T b

i as

Fi = Bifi

where Bi is a wrench basis, and fi ∈ FCi are the contact forces lying inside the
contact’s friction cone Fi. Below we assume that the contact frame is chosen such
that the origin coincides with the point of contact, and the z-axis coincides with the
contact normal. For spatial bodies, there are three different contact types we will
consider [3]:

• Frictionless point contact:

Bi =



0
0
0
0
0
1

 , FCi = {f1 ≥ 0}

• Point contact with friction:

Bi =

 1
1

1

 , F
{
Ci =

√
f2

1 + f2 ≤ µf3, f3 ≥ 0

}
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• Soft-finger (note, f4below has units of torque, not force):

Bi =


1

1
1

1

 , FCi =

{√
f2

1 + f2 ≤ µf3, f3 ≥ 0, f4 ≤ γf3

}

Expressing the wrench Fi applied by contact i in the body frame yields

Fb =
[
AdT c

b

]T Fi =
[
AdT c

b

]T
Bifi = Gifi

Then the grasp map G and the generalized friction cone FC are given by

G = [G1 . . . Gk], FC = FC1 ∪ . . . ∪ FCk

and the set FB of possible wrenches applied by the contacts is given by

FB = {Gf |f ∈ FC}
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