
D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

2.2. MARKOV DECISION PROCESSES 25

2.2 Markov Decision Processes

Motivation

The previous section introduced the fundamental idea that robot actions have uncertain
effects, and showed how these effects can be modeled using conditional probability distributions.
This led to a sampling algorithm that can be used to simulate robot behavior. In this section,
rather than simulating robot behavior, we consider the problem of planning robot behavior.
In particular, we consider the problem of deriving optimal strategies that can be executed by
a robot that is able to measure its state at each moment in time. To accomplish this, it will
be necessary to introduce a few tools from probability theory, leading to the introduction
of a Markov decision process, one of the most powerful computational models available for
robots whose actions are subject to uncertainties during execution.

2.2.1 A Circular World

H A B
G C
F E D

Figure 2.19: A simple building layout that contains eight rooms (rooms A,B, . . . H) arranged
in a cyclic corridor.

We start by giving an another example of an agent, inhabiting a world in which actions
have probabilistic outcomes. Figure 2.19 shows a simple environment consisting of a circular
corridor of rooms. Consider a robot in this environment that may choose one of two actions:

R : move in a counterclockwise direction

L : move in a clockwise direction

As before, we model the effects of these actions as probabilistic. When the robot executes an
action, either R or L, it moves a random number of rooms Dk in the corresponding direction.
More formally, Dk is the random variable that denotes the number of rooms traversed by
the robot at time k. For this example, suppose that probability distribution for Dk is given
by:

P (Dk = dk) =

8
<

:

0.25 : dk = 1
0.5 : dk = 2
0.25 : dk = 3

For example, if the robot is in state Xk = A at time k and executes the action Ak = L, we
have the following conditional probabilities for the state Xk+1

P (Xk+1 = xk+1 | Xk = A,Ak = L) =

8
<

:

0.25 : xk+1 = B

0.5 : xk+1 = C

0.25 : xk+1 = D

D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

26 CHAPTER 2. SIMPLE AGENTS IN DISCRETE DOMAINS

Proceeding in this manner for each possible state and both possible actions, we can construct
the entire conditional probability table, such as shown in Figure 2.10.

2.2.2 Review of Concepts from Probability Theory

Three useful concepts from probability theory that we need below are the Markov property,
the chain rule, and the notion of taking expectations.

The Markov property formalizes the idea from the last chapter that in a Markov chain,
anything that happened prior to time k is irrelevant when determining the outcome Xk+1.
This can be written in general terms as:

P (XK+1 = xk+1 | Xk = xk, . . . X0 = x0) = P (XK+1 = xk+1 | Xk = xk)

Simply stated, if a system satisfies the Markov property, future states depend only on the
current state and action.

We also need the notion of the chain rule. This rule says that any joint probability
P (X, Y) can be rewritten as the product of a prior probability and a conditional:

P (X, Y) = P (X)P (Y |X)

The chain rule is unaffected if we condition on other information Z:

P (X, Y |Z) = P (X|Z)P (Y |X,Z).

The condition simply applies to both factors above.
Finally, the notion of expectation gives a prediction of the average behavior of functions

of probabilistic events. More precisely, if X is a discrete random variable that takes on values
in the set {x1, . . . , xn}, the expected value of a function f(X) of X is defined as

EP (X)[f(X)] =
nX

i=0

f(xi)P (X = xi) (2.1)

A simple example to illustrate this concept is that of rolling a single fair, six-sided die.
In this case, we have six possible events Ei, and let f(Ei) = i be the number of spots on
the top face of the die after it is cast. If the die is fair, we have P (Ei) = 1/6 for each
i 2 {1, 2, 3, 4, 5, 6}. Applying (2.1), we arrive immediately to

EP (Ei)[f(Ei)] =
nX

i=0

i

6
= 3.5.

At first glance this may seem odd; certainly no one literally expects to roll a die and observe
3.5 dots on the top face.

In probability theory, the meaning of expectation is not the usual meaning regarding
what we expect to see as the result of one experience. Rather, the concept of expectation
in probability theory is refers to what we expect for the average behavior when we observe
many trials. For the example of rolling a die, let f(X)N denote the average value obtained
from N rolls of the die. We expect that this average will be close to 3.5, particularly as N

D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

2.2. MARKOV DECISION PROCESSES 27

increases. In probability theory, this idea is captured by the law of large numbers, which, in
its strong form essentially says that

lim
N!1

f(X)N = EP (X)[f(X)]

.

2.2.3 Computing the Probability of a Sequence of States

While sampling gives us a way to simulate, we need a more direct way to compute the
probability distribution over future states. Given the world model above, we can apply the
sampling algorithm described in Section 2.1.7 to generate typical sequences of states for
specific action sequences. Unfortunately, this forward simulation algorithm does not give us
a way to determine the probability that a given sequence will occur, and therefore it is not
immediately useful for the problem planning an appropriate set of actions to achieve a goal.

To develop a method for computing the probability that a given sequence of actions
will lead to a particular sequence of states, let us start with a simple two-step example. In
particular, consider the case in which we begin at time k = 0 in state X0 = A and execute
the action sequence A0 = L,A1 = L. What is the probability that the robot will visit a
sequence of rooms X1 = B,X2 = C? The first step to solving this problem is constructing
a precise description of the probability we wish to compute. In this case, we are given three
pieces of information: X0 = A,A0 = L,A1 = L; we wish to determine the probability of the
outcome X1 = B,X2 = C. Therefore, the probability of interest is exactly expressed as

P (X1 = B,X2 = C | X0 = A,A0 = L,A1 = L).

Given the chain rule, we can find the probability of a two-step sequence. In our example,
X , {X1 = B}, Y , {X2 = C}, and and Z , {X0 = A,A0 = L,A1 = L}. Substituting
that into the conditional chain rule (2.2.2) leads to

P (X1 = B,X2 = C | X0 = A,A0 = L,A1 = L) =

P (X1 = B | X0 = A,A0 = L,A1 = L)P (X2 = C | X1 = B,X0 = A,A0 = L,A1 = L)

The expression on the right hand side can be simplified in two ways. First, the value of X1

clearly does not depend upon the action take at time k = 2, and therefore

P (X1 = B | X0 = A,A0 = L,A1 = L) = P (X1 = B | X0 = A,A0 = L)

Now consider the term P (X2 = C | X1 = B,X0 = A,A0 = L,A1 = L). For the model of
uncertainty that we have defined above, in this example the results of the robot’s action at
stage k depends only on the state Xk and the action Ak, which is simply an instance of the
Markov property. If we apply these observations to our example, we arrive to

P (X1 = B,X2 = C | X0 = A,A0 = L,A1 = L) =

P (X1 = B | X0 = A,A0 = L)P (X2 = C | X1 = B,A1 = L)

D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

28 CHAPTER 2. SIMPLE AGENTS IN DISCRETE DOMAINS

and we can easily determine that P (X1 = B,X2 = C | X0 = A,A0 = L,A1 = L) = 0.0625
using the conditional probabilities for our actions.

We can extend the ideas above to evaluate the probability distribution on sequences of
arbitrary length. This gives us the following general formula:

P (X1 = x1, . . . , Xk+1 = xk+1 | X0 = x0, A0 = a0, . . . , Ak+1 = ak+1) =

P (X1 = x1 | X0 = x0, A0 = a0) . . . P (Xk+1 = xk+1 | Xk = xk, Ak = ak)

2.2.4 Reward and Expected h-stage Return

Now that we are able to compute the probability that a given sequence of actions will produce
a particular sequence of states, let us turn our attention to the more interesting problem of
choosing an optimal set of actions with respect to some desired performance objectives.

In many robotics problems, we specify performance objectives by assigning a specific
reward to each state. Mathematically, if our set of states is denoted by S, then a reward
function is a mapping, R : S ! R, that specifies the reward value for each state. For our
example above, suppose that our main objective is to keep the robot fully charged, and that
the only charging station is in Room E. To capture this objective, we might assign a positive
reward, say +1 to room E, and a small negative reward, say �0.2, to all other rooms.

Since we are generally interested in the accumulated reward over some period of execution,
let us define the h-stage return for a sequence of states as

rh(x0, . . . , xh) =
hX

i=0

R(xi)

in which h denotes the horizon. For the room sequence A,B,C, the 2-stage reward can be
easily computed to be r2(A,B,C) = R(A) +R(B) +R(C) = �0.6.

However, we will need a better way to evaluate the return associated to a random sequence
of states. In this example, it is fairly easy to see that given this reward structure there is
really no better action sequence than L,L; any other actions will definitely move the robot
away from room E. And yet, this return is the worst possible return we could have for a
sequence of two actions. Clearly merely using the h-stage return for a sequence of actions
is not the right way to evaluate the quality of the action sequence. What went wrong? The
problem with using the deterministic sequence A,B,C to evaluate the action sequence L,L

is our actions are not deterministic.
We need to take into account probabilities of outcomes. In fact, as we have seen above,

the probability for this outcome is 0.0625, which means that this situation is not particularly
likely. If we evaluate the probabilities and 2-stage returns for each possible sequence of states
given actions L,L and initial state X0 = A, we obtain

D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

2.2. MARKOV DECISION PROCESSES 29

Sequence Probability 2-stage return
A,B,C 0.0625 -0.6
A,B,D 0.125 -0.6
A,B,E 0.0625 0.6
A,C,D 0.0625 -0.6
A,C,E 0.25 0.6
A,C, F 0.0625 -0.6
A,D,E 0.0625 0.6
A,D, F 0.125 -0.6
A,D,G 0.0625 -0.6

and for any other sequence, the probability is zero. From this table, we can see that the
sequence with the highest probability is A,C,E, which has the maximum return possible.
Nevertheless, there are quite a few possibilities that lead to negative reward.

We can immediately apply this concept to our example, and compute the expected
2-stage return

EP (X1,X2)[r2(A,X1, X2)] = R(A) +
X

P (X1, X2){R(X1) +R(X2)} = �0.075

in which the sum is taken over possible values for X1 and X2 as given in the table above. This
result may not seem so pleasing (a negative return is rarely the desired result), but when
compared with all other options, it is the best. To see this, compute E[r2(A,X1, X2)] for all
other 2-action sequences: (R,R), (R,L), and (L,R). For each of these, E[r2(A,X1, X2)] =
�0.6, so the choice of (L,L) is indeed the best available action sequence from the initial
state X0 = A.

2.2.5 Discounted Rewards

Suppose we wish to maximize the expected return over the lifetime of a robot. In this
case, the value of h could become quite large, even allowing h ! 1, which corresponds
to the so-called infinite horizon problem. If we merely apply the definition of expected h-
stage return, there are two disadvantages that may arise. First, in the infinite horizon case,
the expected return may diverge to infinity, making it impossible to discriminate between
different behaviors. Second, it may be detrimental to give equal weight to rewards that
may occur far into the future when planning near-term actions. One way to deal with these
problems is to introduce a discounting factor, � 2 (0, 1), to obtain the discounted h-stage
return

rh(x0, . . . , xh) =
hX

k=0

�
k
R(xk)

Note that if there is a maximum value for the reward, i.e., if we have R(xi) Rmax for
all i, we can derive a bound on the discounted return as

lim
h!1

rh =
1X

k=0

�
k
R(xk)

1X

k=0

�
k
Rmax =

Rmax

1� �

D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

30 CHAPTER 2. SIMPLE AGENTS IN DISCRETE DOMAINS

Therefore, even in the infinite horizon case, the expected discounted return is finite. In
general, infinite horizon problems are easier to solve, and they provide a good approximation
for finite horizon problems, since the future rewards are severely discounted as k becomes
large.

2.2.6 Policies

In real life, robots or agents take action based on the state they find themselves in. For a
given sequence of actions, say a0, . . . ah we can compute the expected return as

E[rh] = E

"
hX

k=0

�
k
R(Xk) | a0, . . . ah

#
(2.2)

In principle we could use (2.2) to directly compute the optimal sequence of actions: enumerate
every sequence of actions and choose the sequence that maximizes (2.2). If the robot were
going to execute the action sequence without ever making any observations about the world
state, this seem to be a reasonable -if computationally heavy- approach. However, real robots
rarely operate for long periods of time without using their sensors to observe the state of the
world. If the robot is able to determine its state at time k, it makes little sense to commit
to an action sequence that was computed before the robot began operating in the world.

To capture this, we can formally define the notion of a policy. As we know, at time k the
future behavior of a Markov process depends on the current state Xk and the chosen action
ak, but the states for time t < k. Therefore, it makes sense that the robot should update its
decisions depending on its state. This idea leads to the concept of a policy, ⇡ : S ! A, in
which S is the set of states, and A is the set of possible actions. In short, a policy is merely
a mapping from the current state, Xk to the action ak to be executed.

In order to evaluate the quality of a policy, it is necessary to update the idea of h-stage
return to allow for state-dependent action selection. We will denote the expected return for
executing policy ⇡ starting in state x as

V
⇡(x) = E

" 1X

k=0

�
k
R(Xk) | ⇡, X0 = x

#

We can a derive recursive formulation for the value function V
⇡(x) that lends itself to

efficient computation. It is not at all apparent how one could actually compute V
⇡(x) from

the expression (2.2.6) above. Luckily, we have can take some terms out of the expectation

D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

2.2. MARKOV DECISION PROCESSES 31

and rewrite,

V
⇡(x) = E

" 1X

k=0

�
k
R(Xk) | ⇡, X0 = x

#

= E

"
R(X0) +

1X

k=1

�
k
R(Xk) | ⇡, X0 = x

#

= R(x) + �E

" 1X

k=1

�
k�1

R(Xk) | ⇡
#

= R(x) + �E

" 1X

j=0

�
j
R(Xj+1) | ⇡

#

in which we have used the substitution j = k � 1, j + 1 = k to obtain the last line. Now,
notice that the expectation in this last line is nothing more than the expected value of V ⇡(X 0)
under policy ⇡, but in this case the expectation is taken with respect to the random variable
X

0, which denotes the next state when ⇡ is executed in state x, which can be written as

V
⇡(x) = R(x) + �E [V ⇡(X 0) | ⇡]

If we now directly apply the conditional expectation version of (2.1), we obtain

V
⇡(x) = R(x) + �

X

x02S

P (X 0 = x
0 | X = x, a = ⇡(x))V ⇡(x0) (2.3)

That is V
⇡(x) is equal to the sum of (a) the reward in the current state, R(x), and (b)

the discounted expected value of V ⇡(X 0), where X
0 denotes the (random) state obtained by

applying the action ⇡(x) in state x.

2.2.7 The Value Function

Let us denote by ⇡
⇤ the optimal policy with respect to (2.3), i.e.

⇡
⇤ = argmax

⇡
V

⇡(x)

The function V
⇡⇤
(x) gives the maximum possible expected return from state x. In this case,

we denote the expected return as V
⇤ , V

⇡⇤ , and we refer to V
⇤ as the value function. If

we have the value function for a problem, the optimal action at time k is easily computed
using

⇡
⇤(x) = argmax

a2A

X

x02S

P (X 0 = x
0 | X = x, a = ⇡(x))V ⇤(x0) (2.4)

For this reason, estimating the value function has long been a topic of research in the fields
artificial intelligence and machine learning.

The value function V
⇤ can also be expressed in a compact recursive form. Using (2.3)

and (2.4) we can obtain

V
⇤(x) = R(x) + �max

a2A

X

x02S

P (X 0 = x
0 | X = x, a = ⇡(x))V ⇤(x0) (2.5)

D
raft

S
p
rin

g
2021

(c)
D
ellaert

an
d
H
u
tch

in
son

.

32 CHAPTER 2. SIMPLE AGENTS IN DISCRETE DOMAINS

This is the famous Bellman Equation, one of the most important equations in fields
including artificial intelligence, machine learning, stochastic optimal control.

2.2.8 Value Iteration

Besides its elegance, the Bellman Equation (2.5) also lends itself to computation using an
iterative approximation scheme known as value iteration. The idea behind value iteratin is
to compute a sequence of estimates V

l such that V l ! V
⇤. The heart of the value iteration

algorithm is the update equation

V
l+1 = R(x) + �max

a2A

X

x02S

P (X 0 = x
0 | X = x, a = ⇡(x))V l(x0)

This equation is known as a Bellman update. It can be shown that if V l = V
⇤ for some

value of l, then V
l0 = V

⇤ for all l0 > l, and that value iteration converges to the unique
solution of the Bellman equation.

2.2.9 A Formal Description of MDPs

The development above has been largely driven by examples. Here, we collect the various
concepts that have been introduced above to provide a formal definition of Markov decision
processes.

A Markov decision process or MDP is defined by the following:

S the set of states
A the set of actions

P : S ⇥ S ⇥A ! [0, 1] transition probabilities
R : S ! R reward function
� 2 (0, 1) discount factor

	Sense, Think, Act
	Representing the Robot's Environment
	Representing the State of the Robot
	Robot Actions
	Some points to make

	Sensing

	Simple Agents in Discrete Domains
	Probabilistic Actions
	Real Robots
	Atomic State via Discrete Variables
	Probabilistic Outcomes of Actions
	Bayesian vs. Frequentist
	Conditional Probability Distributions
	A Simple Graphical Model
	Forward Simulation
	Factored State Representations

	Markov Decision Processes
	A Circular World
	Review of Concepts from Probability Theory
	Computing the Probability of a Sequence of States
	Reward and Expected h-stage Return
	Discounted Rewards
	Policies
	The Value Function
	Value Iteration
	A Formal Description of MDPs

	 Index

