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1 Continuous Probability Densities

Motivation

In real robots we often deal with continuous variables and continuous state spaces. Hence, we need
to extend the notion of probability to continuous variables.

1.1 Continuous Probability Densities

In robotics we typically need to model a belief over continuous, multivariate random variables
x ∈ Rn. We do this using probability density functions (PDFs) p(x) over the variables x,
satisfying ˆ

p(x)dx = 1. (1)

In terms of notation, for continuous variables we use lowercase letters for random variables, and
uppercase letters to denote sets of them. We drop the notational conventions of making distinctions
between random variables X and their realized values x, which helped us get used to thinking about
probabilities, but will get in the way of clarity below.

A unimodal density has a single maximum, its mode. In general, however, a density can have
multiple modes, in which case we speak of a multimodal density. The mean of a density is defined
as

µ = Ep[x] =

ˆ
xp(x)dx

irrespective of whether the density is unimodal or multimodal. Above, the notation Ep[.] stands for
“the expectation of . with respect to the density p”.

1.2 Gaussian Densities

A Gaussian probability density on a scalar x given mean µ and variance σ2 is given by

N (x;µ, σ2) =
1√

2πσ2
exp

{
−1

2

(
x− µ
σ

)2
}
. (2)

This density is also known as the “bell curve”. This density is very popular in robotics because it is
so simple: it is the just the negative exponential of a quadratic around µ. In a Bayesian probability
framework we interpret densities as knowledge, and the the standard deviation σ indicates the
uncertainty we have about the quantity x.

The other reason of the Gaussian’s popularity derives from the central limit theorem. This
theorem says that the probability of the sum of a number of random variables, no matter what the
density is on them, will tend to a Gaussian density. And, it does not have to be many random
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variables either: summing 4 random variables distributed randomly over an interval yields a cubic
density, which already matches a Gaussian quite nicely.

A multivariate Gaussian density on x ∈ Rnis obtained by extending the notion of a quadratic
to multiple dimensions. We define the squared Mahalanobis distance,

‖x− µ‖2Σ
∆
= (x− µ)>Σ−1 (x− µ) (3)

where µ ∈ Rn is the mean. The quantity Σ is an n × n covariance matrix, a symmetric ma-
trix indicating uncertainty about the mean. The Mahalanobis distance is nothing but a weighted
Euclidean distance, and is the multivariate equivalent of the scalar squared distance

‖x− µ‖2σ2
∆
=

(
x− µ
σ

)2

but using the matrix inverse to weight this distance metric in an n-dimensional space. Armed with
this, the equation for the multivariate Gaussian is

N (x;µ,Σ) =
1√
|2πΣ|

exp

{
−1

2
‖x− µ‖2Σ

}
, (4)

where the term |2πΣ| in the normalization factor denotes the determinant of 2πΣ.
Gaussian densities, whether scalar or multivariate, have some nice properties. A Gaussian

density is unimodal and the mean µ is also its mode. In addition, any scalar marginal of a multi-
variate Gaussian is also a Gaussian. In fact, the probability density P (y) of any linear combination
y = Hx, with y an m-dimensional vector and H an m× n matrix, is also Gaussian with mean Hµ
and covariance HΣHT .

Exercise

1. Given a 2-dimensional density on (x, y), with mean µ = (x̄, ȳ) and covariance matrix

Σ =

[
σ2
x r
r σ2

y

]
what is the variance of the marginals p(x) and p(y) ? Use the linearity property above.

2. Given the same 2D density, what is the mean and variance of the sum z = x+ y?

3. Deeper thinking: what happens to the density if we push it through a nonlinear function, e.g.,
z =

√
x2 + y2, the Euclidean norm of the vector (x, y)? A qualitative answer is asked for.

1.3 Bayes Nets and Mixture Models

Continuous Bayes nets are exactly like discrete Bayes nets, except with continuous variables.
Most of the concepts generalize effortlessly, and we will forego very formal definitions where we can.

An example crucial to the robotics domain is shown in Figure 1, which is the continuous equiv-
alent of the dynamic Bayes net from Part I. In the figure, the continuous Markov chain backbone
represents the evolution of the continuous state xt over time, conditioned on the controls ut. Notice
we use new terminology here: we say controls rather than actions in this new, continuous world.
For example, for the Duckiebot, the control u might be two-dimensional and represent the wheel
speeds of the left and right wheels, respectively. Finally, the continuous measurements zt at the
bottom are conditioned on the states xt.
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Figure 1: Continuous Bayes net modeling a robot with continuous states xt, continuous measure-
ments zt, and continuous controls ut.

We can mix and match discrete and continuous variables. A particularly simple Bayes net is a
Gaussian mixture model. The joint density is

p(x,C) = p(x|C)P (C)

where P (C) is a PMF on a discrete variable C that chooses between different Gaussians, , and
p(x|C) is the corresponding Gaussian mixture component. Even though each Gaussian density is
unimodal, the marginal p(x) is a multimodal density

p(x) =
∑
c

p(x|C = c)p(C = c)

where the sum is over components. An example for a two-component mixture is shown in Figure 2.
Continuous probability densities present a representational challenge. We can no longer specify

CPTs: either an equation needs to be available, as with the Gaussian density above, or an arbi-
trary density has to be somehow approximated. One such approximation is exactly using mixture
densities: we can “mix” many simpler densities, like Gaussians, to approximate a more complicated
density. This is known as Parzen window density estimation.

1.4 Continuous Measurement Models

In many cases it is both justified and convenient to model measurements as corrupted by zero-mean
Gaussian noise. For example, a bearing measurement from a given pose x ∈ SE(2) to a given 2D
landmark l would be modeled as

z = h(x, l) + η, (5)

where h(.) is a measurement prediction function, and the noise η is drawn from a zero-mean
Gaussian density with measurement covariance R. This yields the following conditional density
p(z|x, l) on the measurement z:

p(z|x, l) = N (z;h(x, l), R) =
1√
|2πR|

exp

{
−1

2
‖h(x, l)− z‖2R

}
. (6)
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Figure 2: Gaussian mixture density with two components of about equal weight.

The measurement functions h(.) are often nonlinear in practical robotics applications. Still,
while they depend on the actual sensor used, they are typically not difficult to reason about or
write down. The measurement function for a 2D bearing measurement is simply

h(x, l) = atan2(ly − xy, lx − xx)− xθ, (7)

where atan2 is the well-known two-argument arctangent variant. Hence, the final probabilistic
measurement model p(z|x, l) is obtained as

p(z|x, l) =
1√
|2πR|

exp

{
−1

2
‖atan2(ly − xy, lx − xx)− xθ − z‖2R

}
. (8)

Note that we will not always assume Gaussian measurement noise: to cope with the occasional data
association mistake, we can use robust measurement densities, with heavier tails than a Gaussian
density.

1.5 Continuous Motion Models

For a robot operating in the plane, probabilisitic motion models are densities of the form p(xt+1|xt),
specifying a probabilistic motion model which the robot is assumed to obey. This could be de-
rived from odometry measurements, in which case we would proceed exactly as described above.
Alternatively, such a motion model could arise from known control inputs ut. In practice, we often
use a conditional Gaussian assumption,

p(xt+1|xt, ut) =
1√
|2πQ|

exp

{
−1

2
‖g(xt, ut)− xt+1‖2Q

}
, (9)

where g(.) is a motion model, and Q a covariance matrix of the appropriate dimensionality, e.g.,
3× 3 in the case of robots operating in the plane.
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Summary

We briefly summarize what we learned in this section:

1. Continuous probability densities generalize the notion of probability distributions to continu-
ous random variables.

2. The scalar and multivariate Gaussian densities are useful and relatively simple.

3. Bayes nets generalize as well, and even allow for discrete and continuous variables in the same
Bayes net, as in the case of mixture densities.

4. Continuous measurement models typically have a measurement prediction corrupted by noise,
often modeled as Gaussian.

5. Continuous measurement models follow a similar pattern, but are conditioned on controls.
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