Sampling-Based Methods for Path Planning

With so many slides and ideas from so many people: Howie Choset, Nancy Amato, David Hsu, Sonia Chernova, Steve LaValle, James Kuffner, Greg Hager

Difficulty with classic approaches to path planning

\square Running time increases exponentially with the dimension of the configuration space.

- For a d-dimension grid with 10 grid points on each dimension, how many grid cells are there?

10^{d}

\square Several variants of the path planning problem have been proven to be PSPACE-hard.

Completeness

\square Complete algorithm \rightarrow Slow

- A complete algorithm finds a path if one exists and reports no otherwise in finite time.
■ Example: visibility graph for 2D problems (translation in the plane) and polygonal robot and obstacles
\square Heuristic algorithm \rightarrow Unreliable
■ Example: potential field (we'll see it soon)
\square Probabilistic completeness
- Intuition: If there is a solution path, the algorithm will find it with high probability.

The Rise of Monte Carlo Techniques

- KEY IDEA:

Rather than exhaustively explore ALL possibilities, randomly explore a smaller subset of possibilities while keeping track of progress

- Facilities "probing" deeper in a search tree much earlier than any exhaustive algorithm can
- What's the catch?

Typically we must sacrifice both completeness and optimality
Classic tradeoff between solution quality and runtime performace

Sampling Based Planning:

> Search for collision-free path only by sampling points.

Probabilistic Roadmaps

Probabilistic Road Map (PRM)

- Probabilistic Roadmap methods proceed in two phases:
1.Preprocessing Phase - to construct the roadmap G

2. Query Phase - to search given $q_{\text {init }}$ and $q_{\text {goal }}$

The roadmap is an undirected graph $G=(N, E)$. The nodes in N are a set of configurations of the robot chosen over C-free. The edges in E correspond to feasible straight-line paths.

Probabilistic Roadmap (PRM): multiple queries

Assumptions

\square Static obstacles
\square Many queries to be processed in the same environment
\square Examples

- Navigation in static virtual environments
- Robot manipulator arm in a workcell
\square Advantages:
- Amortize the cost of planning over many problems
- Probabilistically complete

Overview

\square Precomputation: roadmap construction

- Uniform sampling
- Resampling (expansion)
\square Query processing

Uniform sampling

```
Input: geometry of the moving object & obstacles
Output: roadmap G = (V, E)
1: V \leftarrow\varnothing and E \leftarrow\varnothing.
2: repeat
3:
4: if CLEAR(q)then
5: Add q to V.
6: }\quad\mp@subsup{N}{q}{}\leftarrowa\mathrm{ set of nodes in V that are close to q.
6: for each q' ( N N, in order of increasing d(q, q')
7: if LINK(q',q)then
8: Add an edge between q and q' to E.
```


Some terminology

\square The graph G is called a probabilistic roadmap.
\square The nodes in G are called milestones.

How do we determine a random free configuration?

\square We want the nodes of V to be a uniform sampling of $Q_{\text {free }}$

- Draw each of its coordinates from the interval of values of the corresponding degrees of freedom. (Use the uniform probability distribution over the interval)

■ Check for collision both with robot itself and with obstacles

- If collision free, add to V , otherwise discard
- What about rotations? Strategies for sampling orientation are beyond the scope of this class. Since Duckiebots live in the plane, we could merely sample uniformly in the interval $[0,2 \pi]$.

What's the local path planner: $\operatorname{Link}\left(q^{\prime}, q\right)$?

\square There are plenty of possibilities

■ Nondeterministic (include a randomized "wandering" component)
\square We'll have to store local paths in roadmap

- Powerful
\square Slower but maybe we'll need fewer nodes if we do some hard work during roadmap construction?
- Fast and simple
- Less powerful, Roadmap will need more nodes

Go with the fast local planner

\square Need to make sure start and goal configurations can connect to graph, which requires a somewhat dense roadmap
\square Can reuse local planner at query time to connect start and goal configurations

- Don't need to memorize local paths

Distance Functions: $d\left(q, q^{\prime}\right)$

\square Really, d should reflect the likelihood that the planner will fail to find a path

- close points, likely to succeed
- far away, less likely
\square This is often related to the area swept out by the robot along the local path:
- very hard to compute exactly
- usually heuristic distance is used
\square Typical approaches
- Euclidean distance on some embedding of c-space
- Create a weighted combination of translation and rotational "distances"
- Weighted sum of distances for a set of "control points" on the robot

Difficulty

\square Many small connected components

Resampling (expansion)

\square Failure rate

$$
r(q)=\frac{f(q)}{n(q)+1}
$$

\square Weight

$$
w(q)=\frac{r(q)}{\sum_{p} r(p)}
$$

\square Resampling probability

$$
\operatorname{Pr}(q)=w(q)
$$

- $f(q)=\#$ of failed attempts to connect q to the roadmap
- $n(q)=$ total \# of attempts to connect q to the roadmap

Now that we have weights...

- To expand a node c, we compute a short random-bounce walk starting from c.

This means

- Repeatedly pick at random a direction of motion in C-space and move in this direction until an obstacle is hit.
- When a collision occurs, choose a new random direction.
- The final configuration n and the edge (c, n) are inserted into the roadmap and the path is memorized.
- Try to connect n to the other connected components like in the construction step.
- Weights are only computed once at the beginning and not modified as nodes are added to the roadmap.

Resampling (expansion)

Query processing

\square Connect $q_{\text {init }}$ and $q_{\text {goal }}$ to the roadmap
\square Start at $q_{\text {init }}$ and $q_{\text {gaal }}$, perform a random walk, and try to connect with one of the milestones nearby
\square Try multiple times

Error

\square If a path is returned, the answer is always correct.
\square If no path is found, the answer may or may not be correct. We hope it is correct with high probability.

Why does it work? Intuition

\square A small number of milestones almost "cover" the entire configuration space.

\square Rigorous definitions and exist (of course!)

