
CS 3630!

Lecture 5: 
Bayes Nets



Topics 1. A Grid-world Agent

2. Modeling Sensors

3. Joint Distribution
4. Bayes Nets

5. Ancestral Sampling

6. Dynamic Bayes Nets

7. Bayes' rule

8. Inference in Bayes nets
9. MPE

10. MAP



Motivation

• Probability -> simulate robots !
• Our example: grid world
• Probabilistic statements about state: Bayesian inference



1. Grid world example

• 100 outcomes!



Recap: Modeling action

• We can do the same for modeling action:
• State transition model P(T|S,A)
• Exercise: come up with a fairly realistic model for grid world.



2. Modeling Sensors

• Conditionals are cool: we can use them to model and sensing.



Parametric descriptions

• Sensor model P(O|S)
• CPTs can become very big
• Uniformity: implement as a function!
• Exercise: what are the above models? S = (i,j) is robot location in grid.



Parametric descriptions (cont’d)

• Uniformity: implement as a function!
• Left: report the horizontal coordinate j of the robot faithfully
• Right: reports the vertical coordinate i of the robot, but with 9% 

probability gives a random faulty reading



3. Joint Distribution

• What if parameter in conditional is itself a random variable?
• Chain rule: P(X,Y) = P(X|Y) P(Y)
• Riddle: How do we sample?



4. Bayes Nets

• A Bayes net is a directed acyclic graph (DAG) of conditionals.
• The joint is given by multiplying all conditionals:

• Exercise: P(W,X,Y,Z) ?
• Note chain rule P(X,Y) = (X|Y)P(Y) is a special case.



Bayes Nets (cont’d)

• P(W|X,Y)P(X|Y,Z)P(Y|Z)P(Z)
• A Bayes net is very efficient!
• Assume W,X,Y,Z are all 10-valued. 

How many entries in the joint PMF?
• How many entries in CPTs ?



5. Ancestral Sampling

• How do we sample from a Bayes net?
• Recall: sampling from P(X|Y) P(Y) ?

• Generalize:
1. topological sort (Kahn’s algorithm)
2. Sample in topological sort order 



6. Dynamic Bayes Nets
• DBN or dynamic Bayes net: roll 

out time.
• Applied to agents/robots: 

sequence of sensing and acting!
𝑆! 𝑆" 𝑆#

𝑂! 𝑂" 𝑂#

𝐴! 𝐴"



Simulation of Agents

1. Slice 1:
a) Sample from  P(S1)
b) Sense P(O1|S1)
c) Sample from P(A1)

2. Slice 2:
a) Act P(S2|S1 , A1)
b) Sense P(O2|S2)
c) Sample from P(A2)

3. Slice 3:
a) …

𝑆! 𝑆" 𝑆#

𝑂! 𝑂" 𝑂#

𝐴! 𝐴"



7. Bayes’ Rule
• Inference: 
• probabilistic statements about what we know

• Given: we observe a sensor measurement O=o
•What can we say about the state S ?
• You need:
• Sensor model P(O|S)
• Prior probability distribution P(S)

•What we want:
• Posterior probability distribution P(S|O=o)



Bayes’ Rule (cont’d)

• P(S|O) = P(S,O) / P(O) = P(O|S) P(S) / P(O)
• Hence:

• This is known as Bayes’ rule (or: Bayes’ law….)



Exercise

• Apply Bayes’ rule to calculate the posterior P(S|O=5)
• First think about the representation of the result: what is it?



Likelihood functions

• In Bayes’ law, given O=o, all are functions of S

• Introduce the likelihood function:

• Bayes’ law:



The many ways of Bayes

• Classic:

• Intuitive:

• Bare-bones:



8. Inference in Bayes Nets

• Posterior Probability = Complete knowledge of X given some Z values

• Simple algorithm:
1. Enumerate all combinations of X values
2. Calculate posterior



Naïve inference, exercises

• Exercise 1:
• condition on W, Z
• How big is the table?

• Exercise 2:
• Condition on Y, X
• Try branch & bound

• Exercise 3:
• In DBN, assume states are given
• What is complexity of inferring the actions?

𝑆! 𝑆" 𝑆#
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9. Most Probable Explanation

• MPE or most probable explanation, given some Z values

• Find assignment to remaining X values such that above is maximized!
• Simple algorithm:

1. Enumerate all combinations of X values
2. Calculate posterior
3. Pick maximum

• More sophisticated algorithm: branch & bound. Discuss !



10. MAP Estimate

• MAP or maximum a posteriori estimate,  given some Z values

• We now have nuisance variables Y, which we need to marginalize out.
• At least as expensive as MPE, in many cases much more so.



Summary • A Grid world is a more realistic 
robotics example

• Models for sensing and acting 
can be built using parametric 
conditional distributions.

• We can compute a joint
probability distribution, and 
marginal and conditionals from it.

• Bayes nets allow us to encode 
more general joint probability 
distributions over many variables.

• Ancestral sampling is a technique 
to simulate from any Bayes net.

• Dynamic Bayes nets unroll 
time and can be used to 
simulate robots over time.

• Bayes' rule allows us to infer 
knowledge about a state from a 
given observation.

• Inference in Bayes nets is a 
simple matter of enumeration, 
but this can be expensive.

• The maximum probable 
explanation singles out one 
estimate.

• Marginalizing over some 
variables leads to MAP 
inference.


