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Lecture 5

Bayes Nets
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Motivation

* Probability -> simulate robots !
* Our example: grid world
* Probabilistic statements about state: Bayesian inference



1. Grid world example

1

* 100 outcomes! Table 2.2: A PMF describing where a robot might be in a grid.



Recap: Modeling action
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* We can do the same for modeling action:
e State transition model P(T[S,A)
* Exercise: come up with a fairly realistic model for grid world.



2. Modeling Sensors

A S

(a) State transition model P(T'|S, A) (b) Sensor
model P(O|S)

Figure 1: Conditional distributions to model acting and sensing.

* Conditionals are cool: we can use them to model and sensing.



Parametric descriptions

P(O=k|S=ij)=1 if k= P(O=EkS=i4)=091 iff k=1
P(O =k|S=1,7) =0 otherwise P(O=k|S=1,7) =0.01 otherwise

* Sensor model P(O|S)
* CPTs can become very big
e Uniformity: implement as a function!

* Exercise: what are the above models? S = (i,j) is robot location in grid.



Parametric descriptions (cont’d)

PO=FkS=1ij)=1 itk=] PO=kS=1i4)=091 iff k=1
PO =k|S=1,j) =0 otherwise P(O=kFk|S=1,7)=0.01 otherwise

e Uniformity: implement as a function!
* Left: report the horizontal coordinate j of the robot faithfully

* Right: reports the vertical coordinate i of the robot, but with 9%
probability gives a random faulty reading



3. Joint Distribution

—O

Figure 2.4: Joint probability distribution on two variables X and Y.

* What if parameter in conditional is itself a random variable?
* Chain rule: P(X,Y) = P(X]Y) P(Y)
* Riddle: How do we sample?



4. Bayes Nets %

* A Bayes net is a directed acyclic graph (DAG) of conditionals.
* The joint is given by multiplying all conditionals:

P{X;}) =] P(Xi|IL,)
* Exercise: P(WX,Y.,Z, . =
* Note chain rule P(X,Y) = (X|Y)P(Y) is a special case.



Bayes Nets (cont’d) >

e —
 P(W|XY)P(X|Y2)P(Y|2)P(2) T e
* A Bayes net is very efficient! P(Z) )
P(Y|2) 90
e Assume W.X,Y.Z are all 10-valued. P(X|Y. Z) 900
How many entries in the joint PMF? P(W|X, y) 900

* How many entries in CPTs ?



5. Ancestral Sampling

* How do we sample from a Bayes net?

* Recall: sampling from P(X]Y) P(Y) ? —_—

* Generalize:
1. topological sort (Kahn’s algorithm)
2. Sample in topological sort order

@:@k:d@ —




6. Dynamic Bayes Nets

* DBN or dynamic Bayes net: roll
out time.

* Applied to agents/robots:
sequence of sensing and acting!
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Simulation of Agents

(1.

Slice 1: A

a) Sample from P(S,)
b) Sense P(O,|S);)

. ¢) Sample from P(4;) )
2. Slice 2: A
a) Act P(S,|S;, 4;)

b) Sense P(0,|S,)
\___C) Sample from P(4,) /
(3. Slice 3: )

a) ...

\
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/. Bayes’ Rule
* Inference:
* probabilistic statements about what we know
e Given: we observe a sensor measurement O=0
 What can we say about the state S ?

* You need:
* Sensor model P(O/S)
* Prior probability distribution P(S)
* What we want:
* Posterior probability distribution P(S/0=0)



Bayes’ Rule (cont’d)

* P(5/|0)=P(5,0) / P(O) = P(O]S) P(S) / P(O)
* Hence:

P(O = o|S)P(S)
P(O = o)

P(AS‘|0 —_ ()) —

 This is known as Bayes’ rule (or: Bayes’ law....)



Exercise

1 PO=kS=47)=091 iffk=i
PO =Fk|S=1i,7)=0.01 otherwise

* Apply Bayes’ rule to calculate the posterior P(S/0O=5)
* First think about the representation of the result: what is it?



Likelihood functions

* In Bayes’ law, given O=o, all are functions of S

P(O = o|S)P(S)
P(O = o)

P(LS‘|O — ()) —

* Introduce the likelihood function:

L(S;0) £ P(O = 0|S)
* Bayes’ law:

P(S

O =o0) x L(S;0)P(S)




The many ways of Bayes

e Classic:

* Intuitive:

 Bare-bones:

P(S|O = 0) o< L(S;0)P(S)

P(S|O = o) x P(S,0 = o)




8. Inference in Bayes Nets

* Posterior Probability = Complete knowledge of X given some Z values
P(X Z=3)x P(X,Z=3)
e Simple algorithm:

1. Enumerate all combinations of X values
2. Calculate posterior



Naive inference, exercises Y

* Exercise 1: >
e conditionon W, Z
* How big is the table?

* Exercise 2: @ @

* Conditionon, X
* Try branch & bound

 Exercise 3:

* In DBN, assume states are given
* What is complexity of inferring the actions? @ @ @



9. Most Probable Explanation

* MPE or most probable explanation, given some Z values
P(X Z=3)x P(X,Z=3)

* Find assighment to remaining X values such that above is maximized!

e Simple algorithm:
1. Enumerate all combinations of X values
2. Calculate posterior
3. Pick maximum

* More sophisticated algorithm: branch & bound. Discuss |



10. MAP Estimate

* MAP or maximum a posteriori estimate, given some Z values

P(X

Z=3)=) PX.Y=9Z=3x) PXY=0Z=3)
) 1)

* We now have nuisance variables Y, which we need to marginalize out.
* At least as expensive as MPE, in many cases much more so.



Ssummary

A Grid world is a more realistic
robotics example

Models for sensing and acting
can be built using parametric
conditional distributions.

We can compute a joint
probability distribution, and

marginal and conditionals from it.

Bayes nets allow us to encode
more general joint probability

distributions over many variables.

Ancestral sampling is a technique

to simulate from any Bayes net.

Dynamic Bayes nets unroll
time and can be used to
simulate robots over time.

Bayes' rule allows us to infer
knowledge about a state from a
given observation.

Inference in Bayes nets is a
simple matter of enumeration,
but this can be expensive.

The maximum probable
explanation singles out one
estimate.

Marginalizing over some
variables leads to MAP
inference.



