CS 3630

Robot Kinematics: Planar Arms

Robot Arms

- A robot arm (aka serial link manipulator) consists of a series of rigid links, connected by joints (motors), each of which has a single degree of freedom.
- Revolute Joint: Single degree of freedom is rotation about an axis.
- Prismatic joint: Single degree of freedom is translation along an axis.

Revolute Joint

Prismatic Joint

Describing Serial Link Arms

- Number the links in sequence.
- For a robot with n joints:
- Base (which does not move) is Link 0.
- End-effector (tool) is attached to Link n.
- Joint i connects Link $i-1$ to Link i
- We define the joint variable q_{i} for joint i as:

$$
q_{i}=\left\{\begin{array}{l}
\theta_{i} \text { if joint } i \text { is revolute } \\
d_{i} \text { if joint } i \text { is prismatic }
\end{array}\right.
$$

Two-link Planar Arm:

- $n=2$,
- both links are always coplanar (no rotation out of the plane).
- $q_{1}=\theta_{1}, q_{2}=\theta_{2}$

Link 0

Manipulator Kinematics

- Kinematics describes the position and motion of a robot, without considering the forces required to cause the motion.
- Forward Kinematics: Given the value for each joint variable, q_{i}, determine the position and orientation of the end-effector (gripper, tool) frame.
$>$ Assign lots of coordinate frames, and express these frames in terms of the joint variables, q_{i}.

General Approach

- Each link is a rigid body.
- We know how to describe the position and orientation of a rigid body:
- Attach a coordinate frame to the body.
- Specify the position and orientation of the coordinate frame relative to some reference frame.
- If two links, say link $i-1$ and link i are connected by a single joint, then the relationship between the two frames can be described by a homogeneous transformation matrix T_{i}^{i-1} which will depend only on the value of the joint variable!

Homogeneous Transformations

We can simplify the equation for coordinate transformations by augmenting the vectors and matrices with an extra row:

$$
\begin{array}{r}
{\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{0}} \\
1
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{R}_{\mathbf{1}}^{\mathbf{1}} \boldsymbol{P}^{\mathbf{1}}+\boldsymbol{d}^{\mathbf{0}} \\
1
\end{array}\right]=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
\boldsymbol{R}_{\mathbf{1}} & \boldsymbol{d}^{\mathbf{0}} \\
0_{2} & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{1}} \\
1
\end{array}\right]} \\
\tilde{P}^{0}=\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{0}} \\
1
\end{array}\right], \tilde{P}^{1}=\left[\begin{array}{c}
\boldsymbol{P}^{\mathbf{1}} \\
1
\end{array}\right] \\
\tilde{P}^{0}=T_{1}^{0} \widetilde{P}^{1}
\end{array}\right.}
\end{array}
$$

$>\mathrm{T}_{1}^{0}$ is called a homogeneous transformation matrix
$>\widetilde{\mathrm{P}}^{\mathbf{0}}$ are the homogeneous coordinates for P^{0}

Composition of Transformations

From our previous results, we know:

$$
\left.\begin{array}{l}
\tilde{P}^{0}=T_{1}^{0} \tilde{P}^{1} \\
\tilde{P}^{1}=T_{2}^{1} \tilde{P}^{2}
\end{array}\right\} \xrightarrow{\longrightarrow} \tilde{P}^{0}=T_{1}^{0} T_{2}^{1} \tilde{P}^{2} \quad \longrightarrow
$$

This is the composition law for homogeneous transformations.

What about robot arms??

A special case

Suppose the axis x_{i} is collinear with the origin of Frame $i-1$:

- x_{1} is collinear with the origin of Frame 0
- x_{2} is collinear with the origin of Frame 1

$$
T_{i}^{i-1}=\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & a_{i} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} & a_{i} \sin \theta_{i} \\
0 & 0 & 1
\end{array}\right]
$$

Assigning Coordinate Frames to Links

- Frame 0 (the base frame) has its origin at the center of Joint 1 (on the axis of rotation).
- Frame i is rigidly attached to Link i, and has it's origin at the center of Joint $i+1$.
- The x_{i}-axis is collinear with the origin of Frame $i-1$.
- The link length, a_{i} is the distance between the origins of Frames i and $i-1$.
- The homogeneous transformation that relates adjacent frames is given by:

$$
T_{i}^{i-1}=\left[\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} & a_{i} \sin \theta_{i} \\
0 & 0 & 1
\end{array}\right]
$$

Assigning Link Frames

- Frame n is the end-effector frame. It can be attached to link n in any manner that is convenient.
- In this case, $n=2$, so Frame 2 is the end-effector frame.

The Forward Kinematic Map

- The forward kinematic map gives the position and orientation of the end-effector frame as a function of the joint variables:

$$
T_{n}^{0}=F\left(q_{1}, \ldots, q_{n}\right)
$$

- For the two-link planar arm, we have

$$
\begin{aligned}
T_{2}^{0} & =\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & a_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & a_{1} \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & a_{2} \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & a_{2} \sin \theta_{2} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) & a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Simple Geometry...

Simple Geometry...

Three-Link Planar Arm

We can parameterize the end $\sim_{=0}^{x_{3}}=\left[\begin{array}{ccc}C_{123} & -S_{123} & a_{1} C_{1}+a_{2} C_{12}+a_{3} C_{123} \\ S_{123} & C_{123} & a_{1} S_{1}+a_{2} S_{12}+a_{3} S_{123} \\ 0 & 0 & 1\end{array}\right]$

$$
C_{123}=\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right), \text { etc. }
$$

$$
T_{3}^{0}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & X_{e} \\
\sin \phi & \cos \phi & Y_{e} \\
0 & 0 & 1
\end{array}\right]
$$

About the Forward Kinematic Map

- For the two-link arm, we can position the end-effector origin anywhere in the arm's workspace: two inputs (θ_{1}, θ_{2}) and two "outputs" (X_{e}, Y_{e}).
- For the three-link arm, we can position the end-effector origin anywhere in the arm's workspace, and we can choose the orientation of the frame: three inputs $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ and three "outputs" ($\left.X_{e}, Y_{e}, \phi\right)$.
- Suppose we had a four-link arm?
- Infinitely may ways to achieve a desired end-effector configuration $\left(X_{e}, Y_{e}, \phi\right)$.

More General Robot Arms

- With a bit of work, this can be generalized to arbitrary robot arms.
- We shall not do this bit of work in CS3630.

a

Motion Control

- Trajectory following is important
- Spray-painting
- Sealing
- Welding
- Three main approaches:
- Trajectory replay
- Joint-space Motion Control
- Cartesian Motion Control

Trajectory Replay

- Teaching by demonstration
- Define a set of waypoints by "showing" the robot
- Similar to keyframe animation in graphics
- Still need to interpolate between waypoints

RRR example

$$
\begin{aligned}
T_{1}^{0} & =\left[\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & 3.5 \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & 3.5 \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right] \\
T_{2}^{1} & =\left[\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & 3.5 \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 3.5 \sin \theta_{2} \\
0 & 0 & 1
\end{array}\right] \\
T_{3}^{2} & =\left[\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & 2 \cos \theta_{3} \\
\sin \theta_{3} & \cos \theta_{3} & 2 \sin \theta_{3} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- End-effector == frame 3

(a) $\theta_{1}=112^{\circ}, \theta_{2}=-52^{\circ}$, and $\theta_{3}=-60^{\circ}$

RRR example, cont'd

- Multiply 3 matrices
- Note R in upper left
- Check orientation!

(b) $\theta_{1}=60^{\circ}, \theta_{2}=-45^{\circ}$, and $\theta_{3}=-90^{\circ}$

$$
T_{t}^{s}(q)=\left(\begin{array}{ccc}
\cos \beta & -\sin \beta & 3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
\sin \beta & \cos \beta & 3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
0 & 0 & 1
\end{array}\right)
$$

with $\alpha=\theta_{1}+\theta_{2}$ and $\beta=\theta_{1}+\theta_{2}+\theta_{3}$, the latter being the tool orientation.

Proportional Feedback Control

- Feedback law:

$$
q_{t+1}=q_{t}+K_{p}\left(q_{d}-q_{t}\right)
$$

- At every time step:
- Calculate joint space error $e_{t}=q_{d}-q_{t}$
- Increase of decrease proportional to e_{t}
- K_{p} is proportional gain parameter

Proportional Feedback Control

- Properties:
- Closer to goal -> smaller steps
- Automatically reverses sign if we overshoot
- Generalizes to vector-valued control
- Value of Kp really matters:
- too high: overshoot
- too low: slow convergence
- Special case of PID control

The Manipulator Jacobian

- Velocity of end-effector if we move any given joint?
- Given by arrows:
- R=joint 1
- G=joint 2
- B=joint 3

Jacobian = linear map

- Linear relationship between joint space velocity and cartesian velocity (pose space!)

$$
[\dot{x}, \dot{y}, \dot{\theta}]^{T}=J(q) \dot{q}
$$

- J is $3 x n$ matrix:

$$
J(q) \triangleq\left[\begin{array}{llll}
J_{1}(q) & J_{2}(q) & \ldots & J_{n}(q)
\end{array}\right]
$$

- Each $J_{i}(q)$ column corresponds to arrow.
- Partial derivative of pose wrt q_{i}

Worked Example: RRR manipulator

- Remember:

$$
T_{t}^{s}(q)=\left(\begin{array}{ccc}
\cos \beta & -\sin \beta & 3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
\sin \beta & \cos \beta & 3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
0 & 0 & 1
\end{array}\right)
$$

- Extracting x, y, theta:

$$
\left[\begin{array}{l}
x(q) \\
y(q) \\
\theta(q)
\end{array}\right]=\left[\begin{array}{c}
3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
\beta
\end{array}\right]
$$

- So what is Jacobian???

Worked Example: RRR manipulator

- x, y, theta:

$$
\left[\begin{array}{l}
x(q) \\
y(q) \\
\theta(q)
\end{array}\right]=\left[\begin{array}{c}
3.5 \cos \theta_{1}+3.5 \cos \alpha+2 \cos \beta \\
3.5 \sin \theta_{1}+3.5 \sin \alpha+2 \sin \beta \\
\beta
\end{array}\right]
$$

- Jacobian:
$\left(\begin{array}{ccc}-3.5 \sin \theta_{1}-3.5 \sin \alpha-2.5 \sin \beta & -3.5 \sin \alpha-2.5 \sin \beta & -2 \sin \beta \\ 3.5 \cos \theta_{1}+3.5 \cos \alpha+2.5 \cos \beta & 3.5 \cos \alpha+2.5 \cos \beta & 2 \cos \beta \\ 1 & 1 & 1\end{array}\right)$

Cartesian Motion Control

- Convert direction in cartesian space to direction in joint space
- Yields straight-line paths

How do we convert?

- We want a straight line!
- Calculate (scaled) direction of the line
- Error in cartesian space:

$$
E_{t}(q)=\left[\begin{array}{l}
e_{x} \\
e_{y} \\
e_{\theta}
\end{array}\right]=\left[\begin{array}{l}
x_{d}-x\left(q_{t}\right) \\
y_{d}-y\left(q_{t}\right) \\
\theta_{d} \ominus \theta\left(q_{t}\right)
\end{array}\right]
$$

- Then, simple proportional control:

$$
q_{t+1}=q_{t}+K_{p} J\left(q_{t}\right)^{-1} E_{t}(q)
$$

Summary

1. Forward Kinematics is just multiplying transforms
2. We went through an RRR Worked Example
3. Joint-Space Motion Control creates paths that minimize distance in joint space
4. The Manipulator Jacobian provides a relationship between cartesian and joint-space velocities/displacements
5. Cartesian Motion Control exploits this relationship to provide predictable paths in cartesian space
