ICS

Inemat

Robot K

Planar Arms

Robot Arms

* A robot arm (aka serial link manipulator) consists of a series of rigid
links, connected by joints (motors), each of which has a single degree
of freedom.

* Revolute Joint: Single degree of freedom is rotation about an axis.
* Prismatic joint: Single degree of freedom is translation along an axis.

~

Revolute Joint Prismatic Joint

Describing Serial Link Arms

 Number the links in sequence.

* For arobot with n joints:
* Base (which does not move) is Link O. A
* End-effector (tool) is attached to Link n. Y
e Jointiconnects Linki — 1 to Link i)
* We define the joint variable g; for joint i as:

End Effecter

(. J
Ve

0; if joint i is revolute

qi
d; if joint i is prismatic

Link 1 Joint 2

Two-link Planar Arm:

°c n=2,
* both links are always coplanar (no rotation Joint 1
out of the plane). ‘ O
° 1 = 81, q, = 92 Link 0

Manipulator Kinematics

* Kinematics describes the position and motion of a robot, without
considering the forces required to cause the motion.

* Forward Kinematics: Given the value for each joint variable, q;,
determine the position and orientation of the end-effector (gripper,

tool) frame.
Xs 20 4 16 yﬂAjL) -
S
.
o js 190 ‘)“f_.
The basic idea: ,L o
» Assign lots of coordinate frames, \‘f‘%ﬁjm
. 60
and express these frames in terms i
of the joint variables, g;. -
~ ~ T

General Approach

* Each link is a rigid body.

* We know how to describe the position and orientation of a rigid body:

e Attach a coordinate frame to the body.

* Specify the position and orientation of the coordinate frame relative to some
reference frame.

* If two links, say link i — 1 and link i are connected by a single joint, then
the relationship between the two frames can be described by a

homogeneous transformation matrix Tii_l which will depend only on
the value of the joint variable!

Homogeneous Transformations

We can simplify the equation for coordinate transformations
by augmenting the vectors and matrices with an extra row:

[PO] _ [Rgplmol _[R} a° [pll
1 1 0, 1]11

- =[7] o]

> T7 is called a homogeneous transformation matrix
> PY are the homogeneous coordinates for P°

Composition of Transformations

Y2
Y1 y) P.
Yoy 70 ! -

> xz
X0 Ty

From our previous results, we know:

This is the composition law for
homogeneous transformations.

—

PO:T

N EE——) PO_TlTZPZ

Pl =TjP 0
——) T2 _T1T2

But we also know: PO = T

What about robot arms??

e Attach a coordinate frame to each link of the
robot!

* Frame O is attached to Link O, which is merely
the fixed mounting point to the environment.

* Now, the trick is to express T/ ! as a function
of Hi

Suppose the axis x; is collinear with the origin of Frame i — 1:

A SpeCia\ case * x4 is collinear with the origin of Frame 0

* X, is collinear with the origin of Frame 1

cosf; —sinf; a;cosby
TP = |sin 6, cosfB; a;sinb,
0 0 1

sinf, cosf, a,sinf,

[COS 6, —sinf, a,cos 91
Ty =
2

0 0 1

Xy Use this to simplify link coordinate frames!

sinf; cosf; a;sinf;
0 0 1

’I'.i_1 —

l

sinf; cosf; O

[COS 6; —sin?6; O]
0 0 1

[cos 6; —sinf; a;cos Gl]

Assigning Coordinate Frames to Links

* Frame O (the base frame) has its origin at the center of Joint 1 (on the axis of
rotation).

* Frame i is rigidly attached to Link i, and has it’s origin at the center of Joint
[+ 1.

* The x;-axis is collinear with the origin of Frame i — 1.
* The link length, a; is the distance between the origins of Frames i and i — 1.
* The homogeneous transformation that relates adjacent frames is given by:

cosf; —sinf; a;cos6;]
4 | |

T/”" =|sinf; cosH; a;sinb;
0 0 1

.
*
*
*
*
*
*
*
‘0
*

Assigning Link Frames

"""" X, is collinear with the
origin of Frame 1

a8
a8
a®
at®
at®
a®
al
al
at®
a®
al
al
at®
a®
““““
a®
a®
a®
a®
n®
at
a8
a8
a®
at
at®
a®
at
al

at®
at
““““
a®
a®

Xo 6, is the angle from xyto x4

* Frame n is the end-effector frame. It can be attached to link n in any manner that is
convenient.
* Inthiscase, n = 2, so Frame 2 is the end-effector frame.

The Forward Kinematic Map

* The forward kinematic map gives the position and orientation of the
end-effector frame as a function of the joint variables:

Tp = F(qy,) qn)
* For the two-link planar arm, we have

‘cosf; —sinf; aqcosB{][cosf, —sinb, a,cosbl,
T, =|sin6; cosf; aysinf,||sinf, cosh, a,sinb,
0 0 1 0 0 1
cos(0,+60,) —sin(6;+6,) a;cosb;+ a,cos(6;+6,)
= |sin(6,+6,) cos(6,+6,) aqsinf; + a,sin(6,+6,)
0 0 1

S
imple Geomet
ry...

+
"‘
"
*

A

a :
2 sin(61+6>)
6
1+ 6
2

llllllllllllllllllllll

lllllllllll

lllllllllllllll

Simple Geometry...

‘$
*
*
‘$
*

4
a, Sil’l(@l +02) ;

6, + 0,

S TN LI >

a, cos 64

cos(6,+60,) —sin(68;+60,) a,cosb; + a,cos(6;+6,)
T = |sin(6,+6,) cos(6,+6,) a,sinb; + a, sin(6,+6)
0 0 1

Three-Link Planar Arm).

We can parameterize the end (Xe, Ye)

effector frame by (X,,Y ., Pp)

0 _
I3 =1S123 Cip3 a18; +ayS1; +azSia3

Ci23 —S5123 a1C; +a,Cip + 613C123]
0 0 1

Ci23 = cos(6; + 0, + 03), etc.

cos¢p —singp X,
sing cos¢p Y,
0 0 1

TS =

About the Forward Kinematic Map

* For the two-link arm, we can position the end-effector origin anywhere in the
arm’s workspace: two inputs (64, 6,) and two “outputs” (X,,Y,).

* For the three-link arm, we can position the end-effector origin anywhere in the
arm’s workspace, and we can choose the orientation of the frame: three inputs
(0,05, 03) and three “outputs” (X,,Y,,).

e Suppose we had a four-link arm?
* Infinitely may ways to achieve a desired end-effector configuration (X,,Y,, ®).

~

More General Robot Arms

e With a bit of work, this can be generalized to
arbitrary robot arms.
* We shall not do this bit of work in CS3630.

Motion Control

* Trajectory following is important
* Spray-painting
e Sealing
* Welding

* Three main approaches:
* Trajectory replay
 Joint-space Motion Control
e Cartesian Motion Control

y-V/ '&
Image by Roboguru Q@

Trajectory Replay |

* Teaching by demonstration

* Define a set of waypoints by
“showing” the robot

 Similar to keyframe
animation in graphics

e Still need to interpolate
between waypoints

RRR example

cos 04
sin 64

0

cos 6
sin 0o

0

cos b3
sin 03

0

— sin 64
cos 64

0

— sin 65
cos 0o

0

— sin 04

cos 03

0

3.5cosf;

3.5 sin 64
1

3.5cosfy |

3.5 sin 65
1

2cosfs
2 sin 03

1

e End-effector == frame 3

(a) 91 = 1120, 92 = —520, and 93 = —60°

RRR example, cont’d

* Multiply 3 matrices
* Note R in upper left
* Check orientation!

(b) 01 = 600, 92 = —450, and 03 = —90°

cos —sinf3 3.5cosfy + 3.5cosa+ 2cos 3
T7(q) = | sinfB cosfB 3.5sinf) + 3.5sin + 2sin 3
0 0 1

with o = 01 + 65 and 5 = 61 + 65 + 03, the latter being the tool orientation.

Proportional
~eedback Control z5 2__:.2_0.0

* Feedback law:
Ji4+1 — (¢ + I{p(ffd — qf)

* At every time step:
* Calculate joint space error € = (4 — (i
* Increase of decrease proportional to e,
* K, is proportional gain parameter

Proportional
~eedback Control z5 2:.2-0.0

* Properties:
e Closer to goal -> smaller steps
e Automatically reverses sign if we overshoot
* Generalizes to vector-valued control

* Value of Kp really matters:
* too high: overshoot

T T T T T T
1 1 I 1 1 1
' ______:_--‘u"er;.r fgast respcpse (gogd), but plbor stabigty [bad):
P R i Lo N Lo S O I |
: I Sefploint (2 ={ep) i i i i
7

[) too I OW: S I OW CO nve rge n Ce || Il / ! ’;}cceptabie stability and miedium fas:tness [giood compromise)

12F b e m - - £ PSSR DU U SYPEIULE SRR RESPEpR BpS —
A 1 1 I 1 1

 Special case of PID control

https://arduinoplusplus.wordpress.com/2017/06/2a/

0 : ! ! | L : : : i pid-control-experiment-tuning-the-controller/
0 2 4 5 8 10 12 14 16 18 20

https://arduinoplusplus.wordpress.com/2017/06/21/pid-control-experiment-tuning-the-controller/

The Manipulator Jacobian

* Velocity of end-effector
if we move any given
joint?

* Given by arrows:

* R=joint 1

N
"
~
~
~
.\\}

5.5, 3.5, 0.0

* B=joint 3

Jacobian = linear map

* Linear relationship between joint space

velocity and cartesian velocity (pose ;
space!) / I

T, 1, Q]T = J(q)q

* Jis 3xn matrix:

J(q) 2 [Jilq) Ja(q) ... Julq)]

* Each J,(g) column corresponds to arrow.
* Partial derivative of pose wrt g,

Worked Example: RRR manipulator

e Remember:

cos 3

T7(q) = | sinf

0

* Extracting x, y, theta:

e So what is Jaco

cos 3

0

—sinf3 3.5cosf] + 3.5cosa + 2cos 3

3.5sinf; + 3.5sina + 2sin 3
1

- 3.5cos0; + 3.5cosax +2cosf3

3.5s8infy + 3.5sina + 2sin 3
3

Worked Example: RRR manipulator

* X, Y, theta:

x(q) - 3.5cosfy +3.5cosa+2cosf3 |
ylg) | = | 3.5sinf; + 3.5sina + 2sin 3
- 0(q) | ! 3)

e Jacobian:

—3.5s8infy — 3.5sina — 2.5sin3 —3.5sinaw — 2.5s8in3 —2sin/3
3.5cos01 +3.5cosae+2.5¢cos3 3.5cosa+ 2.5¢cos3 2cos/3
1 1 1

Cartesian Motion Control

e Convert direction in cartesian
space to direction in joint space

* Yields straight-line paths

5 -

4.0,4.9,0.0

How do we convert?

 We want a straight line!
 Calculate (scaled) direction of the line

* Error in cartesian space:

e, | Cxg—x(q)
E#(fx’) — €y = Yd — .U(q#)
€9 | ! 0q & 0(q¢) |

* Then, simple proportional control:
Gt+1 = Gt + KpJ(qf)_lEf(q)

Small print: we have to take care when subtracting angles, as they are not unique

Ssummary

1. Forward Kinematics is just multiplying transforms
We went through an RRR Worked Example

3. Joint-Space Motion Control creates paths that minimize
distance in joint space

4. The Manipulator Jacobian provides a relationship between
cartesian and joint-space velocities/displacements

5. Cartesian Motion Control exploits this relationship to
provide predictable paths in cartesian space

