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Pose in 3D



Reference Frames

• Robotics is all about management 
of reference frames
• Perception is about estimation of 

reference frames

• Planning is how to move reference 
frames

• Control is the implementation of 
trajectories for reference frames

• The relation between references 
frames is essential to a successful 
system



Application to Drones
To characterize the position and orientation of a 
drone in flight, 
• attach a coordinate frame to the drone (rigid 

attachment)
• specify the position and orientation of the 

frame.



First… a quick review

Nearly everything we learned about position and orientation in the 
plane can be easily generalized to position and orientation in 3D.

We’ll start with a quick review of the 2D case, then generalize to 3D, 
and show the corresponding mathematical formulations.



Specifying Orientation in the Plane

𝜽

𝜽

𝑥0

𝑦0

𝑥1

𝑦1

sin 𝜃

cos 𝜃

Given two coordinate frames with a common origin, how should we describe the 
orientation of Frame 1 w.r.t. Frame 0?

➢ Specify the directions of 𝑥1 and 𝑦1 with respect to Frame 0 by projecting 
onto 𝑥0 and 𝑦0. 

Notation:  𝑥1
0 denotes 

the x-axis of Frame 1, 
specified w.r.t Frame 0. 

𝑦1
0 =

𝑦1 ⋅ 𝑥0
𝑦1 ⋅ 𝑦0

=
−sin 𝜃
cos 𝜃

We obtain 𝑦1
0 in the 

same way. 

𝑥1
0 =

𝑥1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0

=
cos 𝜃
sin 𝜃



Rotation Matrices (rotation in the plane)

We combine these two vectors to obtain a rotation matrix: 𝑅1
0 =

cos 𝜃
sin 𝜃

−sin 𝜃
cos 𝜃

All rotation matrices have certain properties:
1. The two columns are each unit vectors.
2. The two columns are orthogonal, e.g., 𝑐1 ⋅ 𝑐2 = 0.
3. det 𝑅 = +1

➢The first two properties imply that the matrix 𝑅 is orthogonal.
➢ The third property implies that the matrix is special! (After all, there are plenty of 

orthogonal matrices whose determinant is -1, not at all special.)

The collection of 2 × 2 rotation matrices is called the Special Orthogonal Group of order 2, 
or, more commonly 𝑺𝑶(𝟐).

This concept generalizes to 𝑺𝑶 𝒏 for 𝑛 × 𝑛 rotation matrices.  

For such matrices 𝑹−𝟏= 𝑹𝑻



Rotation Matrices (3D)

All of the properties of SO(2) apply as well to SO(3)!

All rotation matrices have certain properties:
1. The two columns are each unit vectors.
2. The two columns are orthogonal, e.g., 𝑐1 ⋅ 𝑐2 = 0.
3. det 𝑅 = +1

➢The first two properties imply that the matrix 𝑅 is orthogonal.
➢ The third property implies that the matrix is special! (After all, there are plenty of 

orthogonal matrices whose determinant is -1, not at all special.)

The collection of 3 × 3 rotation matrices is called the Special Orthogonal Group of order 3, 
or, more commonly 𝑺𝑶(𝟑).

For such matrices 𝑹−𝟏= 𝑹𝑻



Rotation Matrices for 3D rotations

𝑅1
0 = 𝑥1 ⋅ 𝐹0 𝑦1 ⋅ 𝐹0 𝑧1 ⋅ 𝐹0 =

𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0 𝑧1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0 𝑧1 ⋅ 𝑦0
𝑥1 ⋅ 𝑧0 𝑦1 ⋅ 𝑧0 𝑧1 ⋅ 𝑧0

To build a rotation matrix, say 𝑅1
0: project the axes of Frame 1 onto Frame 0. Each column 

of 𝑅1
0 corresponds to the projection of one axis of Frame 1 onto Frame 0. 



𝑅1
0 = 𝑥1 ⋅ 𝐹0 𝑦1 ⋅ 𝐹0 𝑧1 ⋅ 𝐹0 =

𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0 𝑧1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0 𝑧1 ⋅ 𝑦0
𝑥1 ⋅ 𝑧0 𝑦1 ⋅ 𝑧0 𝑧1 ⋅ 𝑧0

Rotation Matrices for 3D rotations

Project the x-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅1
0: project the axes of Frame 1 onto Frame 0. Each column 

of 𝑅1
0 corresponds to the projection of one axis of Frame 1 onto Frame 0. 



Rotation Matrices for 3D rotations

𝑅1
0 = 𝑥1 ⋅ 𝐹0 𝑦1 ⋅ 𝐹0 𝑧1 ⋅ 𝐹0 =

𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0 𝑧1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0 𝑧1 ⋅ 𝑦0
𝑥1 ⋅ 𝑧0 𝑦1 ⋅ 𝑧0 𝑧1 ⋅ 𝑧0

Project the y-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅1
0: project the axes of Frame 1 onto Frame 0. Each column 

of 𝑅1
0 corresponds to the projection of one axis of Frame 1 onto Frame 0. 



Rotation Matrices for 3D rotations

𝑅1
0 = 𝑥1 ⋅ 𝐹0 𝑦1 ⋅ 𝐹0 𝑧1 ⋅ 𝐹0 =

𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0 𝑧1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0 𝑧1 ⋅ 𝑦0
𝑥1 ⋅ 𝑧0 𝑦1 ⋅ 𝑧0 𝑧1 ⋅ 𝑧0

Project the z-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅1
0: project the axes of Frame 1 onto Frame 0. Each column 

of 𝑅1
0 corresponds to the projection of one axis of Frame 1 onto Frame 0. 



Rotation Matrices for 3D rotations

𝑅1
0 = 𝑥1 ⋅ 𝐹0 𝑦1 ⋅ 𝐹0 𝑧1 ⋅ 𝐹0 =

𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0 𝑧1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0 𝑧1 ⋅ 𝑦0
𝑥1 ⋅ 𝑧0 𝑦1 ⋅ 𝑧0 𝑧1 ⋅ 𝑧0

Project the x-axis of Frame 1 
onto the axes of Frame 0

To build a rotation matrix, say 𝑅1
0: project the axes of Frame 1 onto Frame 0. Each column 

of 𝑅1
0 corresponds to the projection of one axis of Frame 1 onto Frame 0. 

Project the x-axis of Frame 1 
onto the axes of Frame 0

Project the x-axis of Frame 1 
onto the axes of Frame 0

This process is exactly the same as the process for building rotation matrices in SO(2), 
even though it can be more difficult to visualize in 3D for rotation matrices in SO(3).



The simplest example: rotation about the z axis

𝜽

𝜽

𝑥0

𝑦0

𝑥1

𝑦1

𝑧0𝑧1

Recall: for rotation in the plane, we built a rotation matrix as a function 
of 𝜃, the angle between 𝑥1 and 𝑥0 (and also between 𝑦1 and 𝑦0):

➢ 𝑅1
0 =

cos 𝜃
sin 𝜃

−sin 𝜃
cos 𝜃

FOR ROTATION IN THE PLANE

This is easily extended to the case of rotation in 3D about the 
z-axis, since all of the interesting action is in the x-y plane (the 
two z-axes are the same)!

In fact, you’ll see that the 2D rotation matrix shows up in the 
3D rotation matrix:

➢ 𝑅1
0 =

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

FOR ROTATION IN 3D

Projecting 𝑧1 onto Frame 0 involves three 
dot products:

𝑧1 ⋅ 𝑥0 = 0
𝑧1 ⋅ 𝑦0 = 0
𝑧1 ⋅ 𝑧0 = 1



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅𝑗
𝑖 =

𝑥𝑗 ⋅ 𝑥𝑖 𝑦𝑗 ⋅ 𝑥𝑖 𝑧𝑗 ⋅ 𝑥𝑖
𝑥𝑗 ⋅ 𝑦𝑖 𝑦𝑗 ⋅ 𝑦𝑖 𝑧𝑗 ⋅ 𝑦𝑖
𝑥𝑗 ⋅ 𝑧𝑖 𝑦𝑗 ⋅ 𝑧𝑖 𝑧𝑗 ⋅ 𝑧𝑖

𝑅1
0 =

−1 0 0
0 0 1
0 1 0

𝑅0
1 =

−1 0 0
0 0 1
0 1 0



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅𝑗
𝑖 =

𝑥𝑗 ⋅ 𝑥𝑖 𝑦𝑗 ⋅ 𝑥𝑖 𝑧𝑗 ⋅ 𝑥𝑖
𝑥𝑗 ⋅ 𝑦𝑖 𝑦𝑗 ⋅ 𝑦𝑖 𝑧𝑗 ⋅ 𝑦𝑖
𝑥𝑗 ⋅ 𝑧𝑖 𝑦𝑗 ⋅ 𝑧𝑖 𝑧𝑗 ⋅ 𝑧𝑖

𝑅1
0 =

−1 0 0
0 0 1
0 1 0

𝑅0
1 =

−1 0 0
0 0 1
0 1 0

𝑅1
0𝑅0

1= 
−1 0 0
0 0 1
0 1 0

−1 0 0
0 0 1
0 1 0

=
1 0 0
0 1 0
0 0 1

𝑅1
0 −1 = 𝑅0

1 = 𝑅1
0 𝑇



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅𝑗
𝑖 =

𝑥𝑗 ⋅ 𝑥𝑖 𝑦𝑗 ⋅ 𝑥𝑖 𝑧𝑗 ⋅ 𝑥𝑖
𝑥𝑗 ⋅ 𝑦𝑖 𝑦𝑗 ⋅ 𝑦𝑖 𝑧𝑗 ⋅ 𝑦𝑖
𝑥𝑗 ⋅ 𝑧𝑖 𝑦𝑗 ⋅ 𝑧𝑖 𝑧𝑗 ⋅ 𝑧𝑖

𝑅2
0 =

1 0 0
0 −1 0
0 0 −1

𝑅2
1 =

−1
0
0

0
0
−1

0
−1
0



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅𝑗
𝑖 =

𝑥𝑗 ⋅ 𝑥𝑖 𝑦𝑗 ⋅ 𝑥𝑖 𝑧𝑗 ⋅ 𝑥𝑖
𝑥𝑗 ⋅ 𝑦𝑖 𝑦𝑗 ⋅ 𝑦𝑖 𝑧𝑗 ⋅ 𝑦𝑖
𝑥𝑗 ⋅ 𝑧𝑖 𝑦𝑗 ⋅ 𝑧𝑖 𝑧𝑗 ⋅ 𝑧𝑖

𝑅3
0 =

0
−1
0

−1
0
0

0
0
−1



Let’s extend this to 3D rotational coordinate 
transformations.



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃1 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃1 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝟎𝑹𝟏
𝟏𝑷



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 1𝑃 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝟎𝑹𝟏
𝟏𝑷



Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 1𝑃 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝟎𝑹𝟏
𝟏𝑷



To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑃0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝑹𝟏
𝟎 𝑷𝟏

Coordinate Transformations (rotation only)

𝑥0

𝑦0

𝑥1

𝑦1

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 1𝑃 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1



𝑥1

𝑦1

Coordinate Transformations (rotation only)

𝑥0

𝑦0

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃1 =
𝑝𝑥
𝑝𝑦

.

𝑝𝑥
𝑝𝑦

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝𝑥𝑥1 + 𝑝𝑦𝑦1

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥0 and 𝑦0 axes:

𝑝0 =
𝑃 ⋅ 𝑥0
𝑃 ⋅ 𝑦0

= 
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑥0
(𝑝𝑥𝑥1 + 𝑝𝑦𝑦1) ⋅ 𝑦0

=
𝑝𝑥(𝑥1⋅ 𝑥0) + 𝑝𝑦(𝑦1 ⋅ 𝑥0)

𝑝𝑥(𝑥1⋅ 𝑦0) + 𝑝𝑦(𝑦1 ⋅ 𝑦0)

=
𝑥1 ⋅ 𝑥0 𝑦1 ⋅ 𝑥0
𝑥1 ⋅ 𝑦0 𝑦1 ⋅ 𝑦0

𝑝𝑥
𝑝𝑦

= 𝑹𝟏
𝟎 𝑷𝟏

𝑷𝟎 = 𝑹𝟏
𝟎 𝑷𝟏



The simplest example: rotation about the z axis

𝜽

𝜽

𝑥0

𝑦0

𝑥1

𝑦1

𝑧0𝑧1

As we saw above:

𝑅1
0 =

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

The equation for rotational coordinate transformations 
generalizes immediately to the 3D case!

𝑷𝟎 = 𝑹𝟏
𝟎 𝑷𝟏 =

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

𝑝𝑥
𝑝𝑦
0

𝑝𝑥

𝑝𝑦

𝑃



Composition of Rotations

𝑥0

𝑦1

𝑦2

𝑦0
𝑥1

𝑥2

𝑃

𝑃1 = 𝑅2
1𝑃2

𝑃0 = 𝑅1
0𝑃1

From our previous results, we know:

𝑃0 = 𝑅1
0𝑅2

1𝑃2

𝑃0 = 𝑅2
0𝑃2

𝑅2
0 = 𝑅1

0𝑅2
1

But we also know:

𝑅1
0

𝑅2
1

𝑅2
0

This is the composition law for 
rotation transformations.

For now, only consider the rotation, not the translation!
This is an “exploded” view of three coordinate frames 
that share the same origin.

𝑧0

𝑧1

𝑧2



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅𝑗
𝑖 =

𝑥𝑗 ⋅ 𝑥𝑖 𝑦𝑗 ⋅ 𝑥𝑖 𝑧𝑗 ⋅ 𝑥𝑖
𝑥𝑗 ⋅ 𝑦𝑖 𝑦𝑗 ⋅ 𝑦𝑖 𝑧𝑗 ⋅ 𝑦𝑖
𝑥𝑗 ⋅ 𝑧𝑖 𝑦𝑗 ⋅ 𝑧𝑖 𝑧𝑗 ⋅ 𝑧𝑖

𝑅1
0 =

−1 0 0
0 0 1
0 1 0

𝑅2
1 =

−1
0
0

0
0
−1

0
−1
0

𝑅2
0 =

−1 0 0
0 0 1
0 1 0

−1
0
0

0
0
−1

0
−1
0

=
1
0
0

0
−1
0

0
0
−1

This agrees with our earlier result!

𝑅2
0 = 𝑅1

0𝑅2
1



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅𝑗
𝑖 =

𝑥𝑗 ⋅ 𝑥𝑖 𝑦𝑗 ⋅ 𝑥𝑖 𝑧𝑗 ⋅ 𝑥𝑖
𝑥𝑗 ⋅ 𝑦𝑖 𝑦𝑗 ⋅ 𝑦𝑖 𝑧𝑗 ⋅ 𝑦𝑖
𝑥𝑗 ⋅ 𝑧𝑖 𝑦𝑗 ⋅ 𝑧𝑖 𝑧𝑗 ⋅ 𝑧𝑖

In preceding examples, we have computed 𝑅1
0, 𝑅2

0, 𝑅3
0.

Can we compute 𝑅3
2? 

𝑅3
0 = 𝑅2

0𝑅3
2

𝑅2
0 −1 𝑅3

0 = 𝑅3
2

𝑅2
0 𝑇 𝑅3

0 = 𝑅3
2

𝑅0
2𝑅3

0 = 𝑅3
2

𝑅3
2 =

1 0 0
0 −1 0
0 0 −1

0
−1
0

−1
0
0

0
0
−1

=
0
1
0

−1
0
0

0
0
1

Check this against the figure by directly determining 𝑅3
2… it works!



Now let’s add translation…



Specifying Pose in the Plane

𝑥0

Suppose we now translate Frame 1 (no new rotatation). 
What are the coordinates of 𝑃 w.r.t. Frame 0? 

Since we merely translated 𝑃 by a fixed 
vector 𝑑, simply add the offset to our 
previous result!

𝑑𝑥

𝒅𝟎 =
𝒅𝒙
𝒅𝒚

𝑦0

𝑃

𝑑

𝑑𝑦

𝑥1

𝑦1

𝑑

𝑷𝟎 = 𝑹𝟏
𝟎 𝑷𝟏 + 𝒅𝟎



Homogeneous Transformations

𝑷𝟎

1
= 𝑹𝟏

𝟎𝑷𝟏 + 𝒅𝟎

1
=

𝑹𝟏
𝟎 𝒅𝟎

0𝑛 1
𝑷𝟏

1

We can simplify the equation for coordinate transformations 
by augmenting the vectors and matrices with an extra row: 

The set of matrices of the form
𝑅 𝑑
0𝑛 1

, where 𝑅 ∈ 𝑆𝑂(𝑛) and 𝑑 ∈ ℝ𝑛 is called 

the Special Euclidean Group of order 𝒏, or 𝑆𝐸(𝑛).

in which 0𝑛 = 0 ⋯ 0

This is just our eqn from 
the previous page



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑅𝑗
𝑖 =

𝑥𝑗 ⋅ 𝑥𝑖 𝑦𝑗 ⋅ 𝑥𝑖 𝑧𝑗 ⋅ 𝑥𝑖
𝑥𝑗 ⋅ 𝑦𝑖 𝑦𝑗 ⋅ 𝑦𝑖 𝑧𝑗 ⋅ 𝑦𝑖
𝑥𝑗 ⋅ 𝑧𝑖 𝑦𝑗 ⋅ 𝑧𝑖 𝑧𝑗 ⋅ 𝑧𝑖

10

5

4
Now let’s look at both the relative 
orientation and relative position of frames.



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑇1
0 =

−1
0
0
0

0
0
1
0

0
1
0
0

−5
0
4
110

5

4

𝑅1
0 =

−1 0 0
0 0 1
0 1 0



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑇2
1 =

−1
0
0
0

0
0
−1
0

0
−1
0
0

0
0
10
110

5

4

𝑅2
1 =

−1 0 0
0 0 −1
0 −1 0



Composition of Transformations

𝑥0

𝑦1

𝑦2

𝑦0
𝑥1

𝑥2

𝑃

𝑃1 = 𝑇2
1𝑃2

𝑃0 = 𝑇1
0𝑃1

From our previous results, we know:

𝑃0 = 𝑇1
0𝑇2

1𝑃2

𝑃0 = 𝑇2
0𝑃2

𝑇2
0 = 𝑇1

0𝑇2
1

But we also know:

𝑇1
0

𝑇2
1

𝑇2
0

This is the composition law for 
homogeneous transformations.

Now, consider the rotation 
and the translation!

𝑧0

𝑧1

𝑧2



A bunch of examples:

𝑥0 𝑦0

𝑧0

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑧1

𝑧2

𝑧3

A rectangular solid: all angles are multiples of 𝜋/2.

𝑇2
1 =

−1
0
0
0

0
0
−1
0

0
−1
0
0

0
0
10
1

10

5

4

𝑇1
0 =

−1
0
0
0

0
0
1
0

0
1
0
0

−5
0
4
1

𝑇2
0 =

−1
0
0
0

0
0
1
0

0
1
0
0

−5
0
4
1

−1
0
0
0

0
0
−1
0

0
−1
0
0

0
0
10
1

=

1
0
0
0

0
−1
0
0

0
0
−1
0

−5
10
4
1

Check this by directly determining 𝑇2
0 from the figure… it works! 



Inverse of a Homogeneous Transformation
What is the relationship between 𝑇𝑗

𝑖 and 𝑇𝑖
𝑗
?

In general,   𝑇𝑘
𝑗
= 𝑇𝑗

𝑘 −1
and 

𝑹 𝒅
0𝑛 1

−1

=
𝑹𝑻 −𝑹𝑻𝒅
0𝑛 1

This is easy to verify:

𝑹 𝒅
0𝑛 1

𝑹𝑻 −𝑹𝑻𝒅
0𝑛 1

=
𝑹𝑹𝑻 −𝑹𝑹𝑻𝒅 + 𝒅
0𝑛 1

=
𝑰𝒏×𝒏 𝟎𝒏
0𝑛 1

= 𝐼(𝑛+1)×(𝑛+1)



Next Lecture: Visual Slam… 

…how to use all of these 3D coordinate transformations for the case of 
a camera (e.g., mounted on a drone) moving through the world, 
capturing data and building a 3D map of its environment.


