CS 3630

Pose in 3D

Reference Frames

- Robotics is all about management of reference frames
- Perception is about estimation of reference frames
- Planning is how to move reference frames
- Control is the implementation of trajectories for reference frames
- The relation between references frames is essential to a successful
 system

Application to Drones

To characterize the position and orientation of a drone in flight,

- attach a coordinate frame to the drone (rigid attachment)
- specify the position and orientation of the frame.

First... a quick review

Nearly everything we learned about position and orientation in the plane can be easily generalized to position and orientation in 3D.

We'll start with a quick review of the 2D case, then generalize to 3D, and show the corresponding mathematical formulations.

Specifying Orientation in the Plane

Given two coordinate frames with a common origin, how should we describe the orientation of Frame 1 w.r.t. Frame 0?

Rotation Matrices (rotation in the plane)

We combine these two vectors to obtain a rotation matrix: $\quad R_{1}^{0}=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
All rotation matrices have certain properties:

1. The two columns are each unit vectors.
2. The two columns are orthogonal, e.g., $c_{1} \cdot c_{2}=0$.

$$
\text { For such matrices } R^{-1}=R^{T}
$$

3. $\operatorname{det} R=+1$
$>$ The first two properties imply that the matrix R is orthogonal.
$>$ The third property implies that the matrix is special! (After all, there are plenty of orthogonal matrices whose determinant is -1 , not at all special.)

The collection of 2×2 rotation matrices is called the Special Orthogonal Group of order 2, or, more commonly $\underline{\boldsymbol{S O}(2)}$.

Rotation Matrices (3D)

All of the properties of $\mathrm{SO}(2)$ apply as well to $\mathrm{SO}(3)$!
All rotation matrices have certain properties:

1. The two columns are each unit vectors.
2. The two columns are orthogonal, e.g., $c_{1} \cdot c_{2}=0$.

$$
\text { For such matrices } R^{-1}=R^{T}
$$

3. $\operatorname{det} R=+1$
$>$ The first two properties imply that the matrix R is orthogonal.
$>$ The third property implies that the matrix is special! (After all, there are plenty of orthogonal matrices whose determinant is -1 , not at all special.)

The collection of 3×3 rotation matrices is called the Special Orthogonal Group of order 3, or, more commonly $\boldsymbol{S O}(3)$.

Rotation Matrices for 3D rotations

To build a rotation matrix, say R_{1}^{0} : project the axes of Frame 1 onto Frame 0. Each column of R_{1}^{0} corresponds to the projection of one axis of Frame 1 onto Frame 0.

$$
\left.R_{1}^{0}=\left[\begin{array}{l|l|l|l|l}
x_{1} \cdot F_{0} & y_{1} \cdot F_{0} & z_{1} \cdot F_{0}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0}
\end{array} z_{1} \cdot y_{0}, ~\left(x_{1} \cdot z_{0}\right) y_{1} \cdot z_{0}\right) ~ z_{1} \cdot z_{0}\right]
$$

Rotation Matrices for 3D rotations

To build a rotation matrix, say R_{1}^{0} : project the axes of Frame 1 onto Frame 0. Each column of R_{1}^{0} corresponds to the projection of one axis of Frame 1 onto Frame 0.

$$
\begin{aligned}
&\left.R_{1}^{0}=\begin{array}{ll}
x_{1} \cdot F_{0} & y_{1} \cdot F_{0} \\
z_{1}
\end{array} F_{0}\right]=\begin{array}{ccc}
x_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} \\
x_{1} \cdot z_{0}
\end{array}\left.\begin{array}{ll}
y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right] \\
& \\
& \begin{array}{l}
\text { Project the } x \text {-axis of Frame } 1 \\
\text { onto the axes of Frame } 0
\end{array}
\end{aligned}
$$

Rotation Matrices for 3D rotations

To build a rotation matrix, say R_{1}^{0} : project the axes of Frame 1 onto Frame 0. Each column of R_{1}^{0} corresponds to the projection of one axis of Frame 1 onto Frame 0.

$$
R_{1}^{0}=\left[x_{1} \cdot F_{0} \quad y_{1} \cdot F_{0} \quad z_{1} \cdot F_{0}\right]=\left[\begin{array}{llll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & \begin{array}{c}
y_{1} \cdot y_{0} \\
z_{1} \cdot y_{0} \\
y_{1} \cdot z_{0}
\end{array} & z_{1} \cdot z_{0}
\end{array}\right]
$$

Rotation Matrices for 3D rotations

To build a rotation matrix, say R_{1}^{0} : project the axes of Frame 1 onto Frame 0. Each column of R_{1}^{0} corresponds to the projection of one axis of Frame 1 onto Frame 0.

$$
\begin{gathered}
R_{1}^{0}=\left[x_{1} \cdot F_{0} \quad y_{1} \cdot F_{0} \quad \begin{array}{|cc}
z_{1} \cdot F_{0}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0}
\end{array} \begin{array}{|l}
z_{1} \cdot x_{0} \\
z_{1} \cdot y_{0} \\
z_{1} \cdot z_{0}
\end{array}\right] \\
\begin{array}{l}
\text { Project the } z \text {-axis of Frame } 1 \\
\text { onto the axes of Frame } 0
\end{array}
\end{gathered}
$$

Rotation Matrices for 3D rotations

To build a rotation matrix, say R_{1}^{0} : project the axes of Frame 1 onto Frame 0. Each column of R_{1}^{0} corresponds to the projection of one axis of Frame 1 onto Frame 0.

$$
\left.\left.R_{1}^{0}=\| x_{1} \cdot F_{0}\left|\begin{array}{l}
y_{1} \cdot F_{0} \\
z_{1} \cdot F_{0} \\
\hline
\end{array}=\begin{array}{c}
x_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} \\
x_{1} \cdot z_{0}
\end{array}\right| \begin{array}{|l|l|}
y_{1} \cdot x_{0} \\
y_{1} \cdot y_{0} \\
y_{1} \cdot z_{0}
\end{array}\right] \begin{array}{|l}
z_{1} \cdot x_{0} \\
z_{1} \cdot y_{0} \\
z_{1} \cdot z_{0}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Project the } x \text {-axis of Frame } 1 \\
& \text { onto the axes of Frame } 0
\end{aligned}
$$

This process is exactly the same as the process for building rotation matrices in $\mathrm{SO}(2)$, even though it can be more difficult to visualize in 3D for rotation matrices in SO(3).

The simplest example: rotation about the z axis

Recall: for rotation in the plane, we built a rotation matrix as a function of θ, the angle between x_{1} and x_{0} (and also between y_{1} and y_{0}):
$>R_{1}^{0}=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ FOR ROTATION IN THE PLANE
This is easily extended to the case of rotation in 3D about the z-axis, since all of the interesting action is in the x - y plane (the two z-axes are the same)!

In fact, you'll see that the 2D rotation matrix shows up in the 3D rotation matrix:
$>R_{1}^{0}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ FOR ROTATION IN 3D
Projecting z_{1} onto Frame 0 involves three dot products:

$$
\begin{aligned}
& z_{1} \cdot x_{0}=0 \\
& z_{1} \cdot y_{0}=0 \\
& z_{1} \cdot z_{0}=1
\end{aligned}
$$

A rectangular solid: all angles are multiples of $\pi / 2$.

$$
\begin{aligned}
& R_{1}^{0}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& R_{0}^{1}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

A rectangular solid: all angles are multiples of $\pi / 2$.

$$
\left(R_{1}^{0}\right)^{-1}=R_{0}^{1}=\left(R_{1}^{0}\right)^{T}
$$

A rectangular solid: all angles are multiples of $\pi / 2$.

$$
R_{2}^{1}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

$$
R_{2}^{0}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

A rectangular solid: all angles are multiples of $\pi / 2$.

Let's extend this to 3D rotational coordinate transformations.

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given
by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

$$
\begin{aligned}
& \text { We can express the location of the point } P \text { in terms of its coordinates } \\
& \qquad P=p_{x} x_{1}+p_{y} y_{1}
\end{aligned}
$$

To obtain the coordinates of P w.r.t. Frame 0 , we project P onto the x_{0} and y_{0} axes:

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given
by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

$$
\begin{aligned}
& \text { We can express the location of the point } P \text { in terms of its coordinates } \\
& \qquad P=p_{x} x_{1}+p_{y} y_{1}
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

To obtain the coordinates of P w.r.t. Fra
x_{0} and y_{0} axes:

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates
 $$
P=p_{x} x_{1}+p_{y} y_{1}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given by ${ }^{1} P=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.

We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

$$
\begin{aligned}
& \text { To obtain the coordinates of } P \text { w.r.t. Frame } 0 \text {, we project } P \text { onto the } \\
& x_{0} \text { and } y_{0} \text { axes: }
\end{aligned}
$$

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given
by $P^{1}=\left[\begin{array}{l}p_{x} \\ p_{y}\end{array}\right]$.
We can express the location of the point P in terms of its coordinates

$$
P=p_{x} x_{1}+p_{y} y_{1}
$$

To obtain the coordinates of P w.r.t. Frame 0 , we project P onto the x_{0} and y_{0} axes:

$$
\begin{aligned}
& p^{0}=\left[\begin{array}{l}
P \cdot x_{0} \\
P \cdot y_{0}
\end{array}\right]=\left[\begin{array}{l}
\left(p_{x} x_{1}+p_{y} y_{1}\right) \cdot x_{0} \\
\left(p_{x} x_{1}+p_{y} y_{1}\right) \cdot y_{0}
\end{array}\right]=\left[\begin{array}{l}
p_{x}\left(x_{1} \cdot x_{0}\right)+p_{y}\left(y_{1} \cdot x_{0}\right) \\
p_{x}\left(x_{1} \cdot y_{0}\right)+p_{y}\left(y_{1} \cdot y_{0}\right)
\end{array}\right] \\
&=\left[\begin{array}{ll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0}
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]=\boldsymbol{R}_{1}^{0} \boldsymbol{P}^{\mathbf{1}}
\end{aligned}
$$

$$
P^{0}=R_{1}^{0} P^{1}
$$

The simplest example: rotation about the z axis

As we saw above:

$$
R_{1}^{0}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The equation for rotational coordinate transformations generalizes immediately to the 3D case!

$$
\boldsymbol{P}^{\mathbf{0}}=\boldsymbol{R}_{\mathbf{1}}^{\mathbf{0}} \boldsymbol{P}^{\mathbf{1}}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
0
\end{array}\right]
$$

For now, only consider the rotation, not the translation! This is an "exploded" view of three coordinate frames that share the same origin.

From our previous results, we know:

$$
\left.\begin{array}{l}
P^{0}=R_{1}^{0} P^{1} \\
P^{1}=R_{2}^{1} P^{2}
\end{array}\right\} \underset{\text { But we also know: } \quad P^{0}=R_{2}^{0} P^{2}}{\longrightarrow} \quad \begin{aligned}
& R_{1}^{0} R_{2}^{1} P^{2} \\
&
\end{aligned}
$$

This is the composition law for rotation transformations.

$$
R_{2}^{0}=R_{1}^{0} R_{2}^{1}
$$

A rectangular solid: all angles are multiples of $\pi / 2$.

This agrees with our earlier result!

A bunch of examples:
 $$
R_{j}^{i}=\left[\begin{array}{lll} x_{j} \cdot x_{i} & y_{j} \cdot x_{i} & z_{j} \cdot x_{i} \\ x_{j} \cdot y_{i} & y_{j} \cdot y_{i} & z_{j} \cdot y_{i} \\ x_{j} \cdot z_{i} & y_{j} \cdot z_{i} & z_{j} \cdot z_{i} \end{array}\right]
$$

A rectangular solid: all angles are multiples of $\pi / 2$.

$$
R_{3}^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Check this against the figure by directly determining $R_{3}^{2} \ldots$ it works \int^{\prime}

Now let's add translation...

Specifying Pose in the Plane

Suppose we now translate Frame 1 (no new rotatation). What are the coordinates of P w.r.t. Frame 0?

Since we merely translated P by a fixed vector d, simply add the offset to our

Homogeneous Transformations

We can simplify the equation for coordinate transformations by augmenting the vectors and matrices with an extra row:

This is just our eqn from

 the previous page
in which $0_{n}=\left[\begin{array}{lll}0 & \cdots & 0\end{array}\right]$

The set of matrices of the form $\left[\begin{array}{ll}R & d \\ 0_{n} & 1\end{array}\right]$, where $R \in S O(n)$ and $d \in \mathbb{R}^{n}$ is called
the Special Euclidean Group of order n, or $\operatorname{SE}(n)$.

A bunch of examples:
A rectangular solid: all angles are multiples of $\pi / 2$.

Now let's look at both the relative orientation and relative position of frames.

A bunch of examples:

A rectangular solid: all angles are multiples of $\pi / 2$.

$$
\begin{aligned}
R_{1}^{0} & =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
T_{1}^{0} & =\left[\begin{array}{cccc}
-1 & 0 & 0 & -5 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

A bunch of examples:

A rectangular solid: all angles are multiples of $\pi / 2$.

$$
R_{2}^{1}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

$$
T_{2}^{1}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 10 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Composition of Transformations

From our previous results, we know:

$$
\left.\begin{array}{l}
P^{0}=T_{1}^{0} P^{1} \\
P^{1}=T_{2}^{1} P^{2}
\end{array}\right\} \underset{\text { But we also know: }}{\longrightarrow} P^{0}=T_{1}^{0} T_{2}^{1} P^{2}+
$$

This is the composition law for

A bunch of examples:

A rectangular solid: all angles are multiples of $\pi / 2$.

$$
\begin{aligned}
& T_{1}^{0}=\left[\begin{array}{cccc}
-1 & 0 & 0 & -5 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& T_{2}^{1}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 10 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& T_{2}^{0}=\left[\begin{array}{cccc}
-1 & 0 & 0 & -5 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 10 \\
0 & 0 & 0 & 1
\end{array}\right] \\
&=\left[\begin{array}{cccc}
1 & 0 & 0 & -5 \\
0 & -1 & 0 & 10 \\
0 & 0 & -1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Check this by directly determining T_{2}^{0} from the figure... it works!

Inverse of a Homogeneous Transformation

What is the relationship between T_{j}^{i} and T_{i}^{j} ?

$$
\text { In general, } T_{k}^{j}=\left(T_{j}^{k}\right)^{-1} \text { and }\left[\begin{array}{ll}
R & d \\
0_{n} & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} d \\
0_{n} & 1
\end{array}\right]
$$

This is easy to verify:

$$
\left[\begin{array}{cc}
R & d \\
0_{n} & 1
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R}^{T} & -R^{T} d \\
0_{n} & 1
\end{array}\right]=\left[\begin{array}{cc}
R R^{T} & -R R^{T} d+d \\
0_{n} & 1
\end{array}\right]=\left[\begin{array}{cc}
I_{n \times n} & 0_{n} \\
0_{n} & 1
\end{array}\right]=I_{(n+1) \times(n+1)}
$$

Next Lecture: Visual Slam...

...how to use all of these 3D coordinate transformations for the case of a camera (e.g., mounted on a drone) moving through the world, capturing data and building a 3D map of its environment.

