

CS 3630!

Lecture 17:
Computer Vision
Fundamentals

Topics

- 1. Perspective Cameras
- 2. Pinhole Camera Model
- 3. Properties of projective Geometry
- 4. Stereo Vision
- 5. Stereo Geometry
- 6. Stereo Algorithms

Many slides borrowed from James Hays,
 Irfan Essa, Sing Bing Kang and others.

Motivation

- We need to model the image formation process
- The camera can act as an (angular) measurement device
- Need a mathematical model for a simple camera
- Two cameras are better than one: metric measurements

1. Perspective Cameras

- Recall: Computer Vision: Images to Models
- To do this, we first need to understand the image formation process.
- We concentrate here on *geometry* (not photometry)

Camera and World Geometry

Projection can be tricky...

Projection can be tricky...

2. Pinhole camera model

f = focal length

c = center of the camera

Camera obscura: the pre-camera

 Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

• Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Pinhole Camera

• Fundamental equation:

Homogeneous Coordinates

Linear transformation of homogeneous (projective) coordinates

Recover image (Euclidean) coordinates by normalizing:

$$x = \frac{u}{w} = \frac{X}{Z}$$
$$y = \frac{v}{w} = \frac{Y}{Z}$$

Pixel coordinates in 2D

Intrinsic Calibration

3 ´ 3 Calibration Matrix K

Recover image (Euclidean) coordinates by normalizing:

$$x = \frac{u}{w} = \frac{\partial X + sY + u_0}{Z}$$

$$y = \frac{v}{w} = \frac{bY + v_0}{Z}$$
5 Degrees of Freedom!

Camera Pose

In order to apply the camera model, objects in the scene must be expressed in *camera coordinates*.

Projective Camera Matrix

Camera = Calibration 'Projection 'Extrinsics

$$=K[R \quad t]M=PM$$

5+6 Degrees of Freedom (DOF) = 11!

3. Properties of projective Geometry

What is lost?

Length

Properties of projective Geometry

What is lost?

- Length
- Angles

Properties of projective Geometry

What is preserved?

• Straight lines are still straight

We can see infinity!

Vanishing points and lines

Vanishing points and lines

Vanishing points and lines

CS 3630!

Lecture 17:
Computer Vision
Fundamentals

4. Stereo Vision

- Stereo is used in the HVS
- Very useful in computer vision as well
- Eliminates scale ambiguity

Many slides adapted from F&P and Sing Bing Kang guest lecture

Effect of Moving Camera

- As camera is shifted (viewpoint changed):
 - 3D points are projected to different 2D locations
 - Amount of shift in projected 2D location depends on depth
- 2D shifts= stereo disparity

Example

RightImagge

Example

R.I.e. fistiplizara integree

View Interpolation

Basic Idea of Stereo

Triangulate on two images of the same point to recover depth.

- Feature matching across views
- Calibrated cameras

Matching correlation windows across scan lines

Why is Stereo Useful?

- Passive and non-invasive
- Robot navigation (path planning, obstacle detection)
- 3D modeling (shape analysis, reverse engineering, visualization)
- Photorealistic rendering

5. Stereo Geometry

- Recall: Pinhole model
- Now we have two!
- How to recover depth from two measurements?

Review: Pinhole Camera Model

3D scene point P is projected to a 2D point Q in the virtual image plane

The 2D coordinates in the image are given by

$$(u,v) = \left(f\frac{X}{Z}, f\frac{Y}{Z}\right)$$

Note: image center is (0,0)

Basic Stereo Derivations

Basic Stereo Formula

6. Stereo Algorithm

$$Z(x,y) = \frac{fB}{d(x,y)}$$

Z(x, y) is depth at pixel (x, y)d(x, y) is disparity

Matching correlation windows across scan lines

Components of Stereo Algorithms

- Matching criterion (error function)
 - Quantify similarity of pixels
 - Most common: direct intensity difference
- Aggregation method
 - How error function is accumulated
 - Options: Pixel, edge, window, or segmented regions
- Optimization and winner selection
 - Examples: Winner-take-all, dynamic programming, graph cuts, belief propagation

Stereo Correspondence

- Search over disparity to find correspondences
- Range of disparities can be large

Correspondence Using Window-based Correlation

Sum of Squared (Intensity) Differences

 w_L and w_R are corresponding m by m windows of pixels.

We define the window function:

$$W_m(x,y) = \{ u, v \mid x - \frac{m}{2} \le u \le x + \frac{m}{2}, y - \frac{m}{2} \le v \le y + \frac{m}{2} \}$$

The SSD cost measures the intensity difference as a function of disparity:

$$C_r(x,y,d) = \mathop{\partial}_{(u,v)} [I_L(u,v) - I_R(u-d,v)]^2$$

Correspondence Using Correlation

Left

Images courtesy of Point Grey Research

Disparity Map

Two major roadblocks

- Textureless regions create ambiguities
- Occlusions result in missing data

Dealing with ambiguities and occlusion

- Ordering constraint:
 - Impose same matching order along scanlines
- Uniqueness constraint:
 - Each pixel in one image maps to unique pixel in other
- Can encode these constraints easily in dynamic programming

Edge-based Stereo

 Another approach is to match edges rather than windows of pixels:

- Which method is better?
 - Edges tend to fail in dense texture (outdoors)
 - Correlation tends to fail in smooth featureless areas
 - Sparse correspondences

Segmentation-based Stereo

Hai Tao and Harpreet W. Sawhney

Another Example

Stereo is Still Unresolved

- Depth discontinuities
- Lack of texture (depth ambiguity)
- Non-rigid effects (highlights, reflection, translucency)

Hallmarks of A Good Stereo Technique

- Should account for occlusions
- Should account for depth discontinuity
- Should have reasonable shape priors to handle textureless regions (e.g., planar or smooth surfaces)

Advanced: account for non-Lambertian surfaces

Left

Right

Result of using a more sophisticated stereo algorithm

View Interpolation

Summary

- 1. Perspective Cameras Intro
- 2. Pinhole Camera Model defined
- 3. Properties of Projective Geometry
- 4. Stereo Vision can recover metric structure
- 5. Stereo Geometry is simply Z = f B/d
- 6. Amazing Stereo Algorithms are still elusive

