Lecture 16: Computer Vision Fundamentals
Topics

1. What is Computer Vision?
2. Applications of CV
3. Images as 2D arrays
4. Basic Image Processing
5. Image Filtering

• Many slides borrowed from James Hays, Irfan Essa, and others.

• Intro CV course: CS 4476
 • This spring: Judy Hoffmann
 • Coming Fall: Frank Dellaert
Motivation

• Robots need to act in the world
• One of the cheapest and richest sensors is a camera
• Unfortunately, understanding camera images is not easy
• Since the sixties, researchers have tried to tackle this problem
• Since 2012, deep learning has led to incredible progress
• Perception for robotics is following closely behind
1. What is Computer Vision?

Computer Graphics: Models to Images
Comp. Photography: Images to Images

Computer Vision: Images to Models
Computer Vision

Make computers understand images and video or any visual data.

What kind of scene?
Where are the cars?
How far is the building?
…
Vision is really hard

- Vision is an amazing feat of natural intelligence
 - Visual cortex occupies about 50% of Macaque brain
 - One third of human brain devoted to vision (more than anything else)

Is that a queen or a bishop?
Why computer vision matters

Safety
Health
Security
Comfort
Fun
Robotics
Ridiculously brief history of computer vision

• 1966: Minsky assigns computer vision as an undergrad summer project
• 1960’s: interpretation of synthetic worlds
• 1970’s: some progress on interpreting selected images
• 1980’s: ANNs come and go; shift toward geometry and increased mathematical rigor
• 1990’s: face recognition; statistical analysis in vogue
• 2000’s: broader recognition; large annotated datasets available; video processing starts
• 2010’s: Deep learning with ConvNets
• 2020’s: Widespread autonomous vehicles?
• 2030’s: robot uprising?
2. Applications of Computer Vision

- Examples of real-world applications
Optical character recognition (OCR)

Technology to convert scanned docs to text

- If you have a scanner, it probably came with OCR software
Object recognition (in mobile phones)

E.g. Google Lens
Face detection

- Digital cameras (you know these as “phones”) detect faces
Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now widely in use on smartphones
Sports

Sportvision first down line
Nice explanation on www.howstuffworks.com

http://www.sportvision.com/video.html
Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic
Augmented Reality and Virtual Reality

Magic Leap, Oculus, Hololens, etc.
Medical imaging

3D imaging
MRI, CT

Image guided surgery
Grimson et al., MIT
Smart cars

- **Mobileye**
 - Market Capitalization: 11 Billion dollars
 - Bought by Intel for 15 Billion dollars
Computer Vision in space

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.

NASA's Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.
3. Images as 2D Arrays
Image Acquisition Pipeline

* Analog (incoming light) to digital (pixels)
A Digital Image (W X H)

width = 512 pixels
height = 512 pixels
512 X 512 pixels = 262,144 pixels = 0.26 MP image
A Digital Image!

- Numeric representation in 2-D (x and y)
- Referred to as $l(x,y)$ in continuous function form, $l(i,j)$ in discrete
- **Image Resolution**: expressed in terms of Width and Height of the image
A “picture element” that contains the light intensity at some location \((i,j)\) in the image.

\[I(i,j) = \text{Some Numeric Value} \]
Characteristics of a Digital Image

- A two-dimensional array of pixels and respective intensities
- Image can be represented as a Matrix
- Intensity Values range from 0 = Black to 255 = White
Common data types

Data types used to store pixel values:
- unsigned char
- uint8
- unsigned char 8bit
- $2^n \ (2^1, 2^2, 2^4, 2^8, \text{ etc.})$
Digital Image Formats

Images can also be 16, 24, 32 bits-per-pixel:
 • 24 bits per pixel usually means 8 bits per color
 • At the two highest levels, the pixels themselves can carry up to 16,777,216 different colors

Common raster image formats:
 • GIF, JPG, PPM, TIF, BMP, etc.
Digital Image is a Function

100 120 121 122 30 40
120 120 121 122 70 40
60 50 40 41 7 8
100 120 121 122 1 0
200 120 200 122 12 14
200 220 225 250 30 40

Continuous Signal

Discrete Signal

Slide adapted from Steve Seitz and Aaron Bobick
Digital Image is a Function

\[I(x, y) \]

<table>
<thead>
<tr>
<th>x or i</th>
<th>y or j</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 120 121 122 30 40</td>
<td></td>
</tr>
<tr>
<td>120 120 121 122 70 40</td>
<td></td>
</tr>
<tr>
<td>60 50 40 41 7 8</td>
<td></td>
</tr>
<tr>
<td>100 120 121 122 1 0</td>
<td></td>
</tr>
<tr>
<td>200 120 200 122 12 14</td>
<td></td>
</tr>
<tr>
<td>200 220 225 250 30 40</td>
<td></td>
</tr>
</tbody>
</table>

Slide adapted from Steve Seitz and Aaron Bobick
Digital Image is a Function

- Typically, the functional operation requires discrete values
 - Sample the two-dimensional (2D) space on a regular grid
 - Quantize each sample (rounded to “nearest integer”)
- Matrix of integer values (Range: 0-255)
Digital Image Statistics

- Image statistics - average, median, mode
 - Scope - entire image or smaller windows/regions
- Histogram - distribution of pixel intensities in the image
 - Can be separate for each channel, or region-based too
Color Digital Image: An Example

- Color image = 3 color channels (images, with their own intensities) blended together
- Makes 3D data structure of size: Width X Height X Channels
- Each pixel has therefore 3 intensities: Red (R), Green (G), Blue (B)

<table>
<thead>
<tr>
<th>Color</th>
<th>Red Channel</th>
<th>Green Channel</th>
<th>Blue Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Basic Image Processing

- Contrast
- Brightness
- Gamma
- Histogram equalization
- Arithmetic
- Compositing
Contrast

\[g(x) = a \cdot f(x), \quad a=1.1 \]
Brightness

\[g(x) = f(x) + b, \quad b=16 \]
Gamma correction

\[g(x) = (f(x))^{1/\gamma} \]

- \(\gamma = 1.2 \)
Histogram Equalization

- Non-linear transform to make histogram flat
- Still a per-pixel operation $g(x) = h(f(x))$
Point-Process: Pixel/Point Arithmetic

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>122</td>
<td>140</td>
<td>142</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>120</td>
<td>141</td>
<td>144</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>121</td>
<td>144</td>
<td>146</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>121</td>
<td>144</td>
<td>145</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>121</td>
<td>145</td>
<td>147</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{c|c|c|c|c}
120 & 122 & 140 & 142 & 143 \\
121 & 120 & 141 & 144 & 147 \\
122 & 121 & 144 & 146 & 11 \\
125 & 121 & 144 & 145 & 10 \\
126 & 121 & 145 & 147 & 13 \\
\end{array} \]

\[+ \]

\[\begin{array}{c|c|c|c|c}
120 & 122 & 140 & 142 & 143 \\
121 & 80 & 40 & 144 & 10 \\
122 & 81 & 40 & 0 & 151 \\
125 & 80 & 40 & 0 & 152 \\
126 & 70 & 40 & 0 & 153 \\
\end{array} \]

\[= \]

\[\begin{array}{c|c|c|c|c}
240 & 244 & 280 & 284 & 286 \\
121 & 200 & 181 & 288 & 157 \\
122 & 202 & 184 & 146 & 162 \\
125 & 201 & 184 & 145 & 164 \\
126 & 191 & 185 & 147 & 166 \\
\end{array} \]
Pixel/Point Arithmetic: An Example

Image 1

- Image 2

Image 1 - Image 2

Binary(Image 1 - Image 2)
Matte: an alpha image
aF
\[(1-a)B\]
KeyMix: aF + (1-a)B
5. Image Filtering

Image filtering: compute function of local neighborhood at each position

• Very important!
 • Enhance images
 • Denoise, resize, increase contrast, etc.
 • Extract information from images
 • Texture, edges, distinctive points, etc.
 • Detect patterns
 • Template matching
 • Deep Convolutional Networks
Example: box filter

$$g[\cdot, \cdot]$$

$$\frac{1}{9}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}$$

Slide credit: David Lowe (UBC)
Image filtering

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[g[\cdot, \cdot] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]
Image filtering

\[g[\cdot, \cdot] = \frac{1}{9} \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \]

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l] \]
Image filtering

\[g[\cdot, \cdot] = \frac{1}{9} \]

\[f[\cdot, \cdot] \]

\[h[\cdot, \cdot] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]
Image filtering

\[f[\ldots] \]

\[g[\cdot,\cdot] = \frac{1}{9} \]

\[h[\ldots] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]
Image filtering

\[f[\cdot,\cdot] \]

\[h[\cdot,\cdot] \]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]

Credit: S. Seitz
Image filtering

$$f[\ldots]$$

$$g[\cdot,\cdot] \frac{1}{9}$$

$$h[\ldots]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz
Image filtering

\[f[\cdot, \cdot] \]

\[g[\cdot, \cdot] \]

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

\[
h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]
\]

Credit: S. Seitz
Image filtering

\[f[\ldots] \quad g[\cdot, \cdot] \]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 90 & 0 & 90 & 90 & 90 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 10 & 20 & 30 & 30 & 30 & 20 & 10 \\
0 & 20 & 40 & 60 & 60 & 60 & 40 & 20 \\
0 & 30 & 60 & 90 & 90 & 90 & 60 & 30 \\
0 & 30 & 50 & 80 & 80 & 90 & 60 & 30 \\
0 & 30 & 50 & 80 & 80 & 90 & 60 & 30 \\
0 & 30 & 50 & 80 & 80 & 90 & 60 & 30 \\
0 & 20 & 30 & 50 & 50 & 60 & 40 & 20 \\
10 & 20 & 30 & 30 & 30 & 30 & 20 & 10 \\
10 & 10 & 10 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \]
Box Filter

What does it do?

• Replaces each pixel with an average of its neighborhood

• Achieve smoothing effect (remove sharp features)

\[
g[\cdot, \cdot] = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Slide credit: David Lowe (UBC)
Smoothing with box filter
Median filters

• A Median Filter operates over a window by selecting the median intensity in the window.

• What advantage does a median filter have over a mean filter?

• Is a median filter a kind of convolution?
Comparison: salt and pepper noise

Mean Gaussian Median

3x3

5x5

7x7

© 2006 Steve Marschner • 58 Slide by Steve Seitz
Summary

1. **Computer Vision** defined
2. **Applications** of CV are plentiful!
3. Images are **2D arrays** of pixel values
4. **Basic image processing**: contrast, intensity, histogram eq., arithmetic
5. **Image filtering**: convolution (linear) and non-linear (median)