
CS 3630!

Lecture 15: 
SLAM with LIDARS



Topics

1. LIDAR
2. Localization with LIDAR
3. PoseSLAM: SLAM with ICP
4. The PoseSLAM Factor Graph
5. MAP = MPE = Nonlinear Optimization
6. Optimization with GTSAM



Motivation

• LIDAR = light detection and ranging
• Key sensor in Autonomous Driving
• Used for localization
• First, need a map to localize in!

• SLAM = 
Simultaneous Localization and Mapping

• Use Iterated Closest Points to relate scans
• Use optimization over SE(2) to do SLAM

Image by Voyage

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff


1. LIDAR

• Superpowers:
• 360 Visibility
• Accurate depth!

• Almost all AV prototypes 
have them (not all 360)

Images and exposition take from 
excellent Voyage Blog post https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff


LIDAR Basic Principle

• Send a light pulse
• Measure elapsed time Et
• Infer distance d Images and exposition take from 

excellent Voyage Blog post

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff


Example

Images and exposition take from 
excellent Voyage Blog post

https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff


2. Localization with LIDAR

• ICP = Iterated Closest Points:
• Call current scan S, map M
• Predict pose from motion model: 

use other sensors if available
• Iterate:

• For every point s: find closest m
• Re-estimate pose

• In practice: 
• outlier rejection to account for moving 

objects, unmodeled structures, parked 
cars etc…

Image Credits: Innoviz



Still an active area of 
research
• E.g., recent paper from Uber ATG
• “reliable and accurate localization remains an open problem,”
• “[ICP] can lead to high-precision localization, but remain vulnerable in the 

presence of geometrically non-distinctive or repetitive environments, such as 
tunnels, highways, or bridges”



3. SLAM

• Mapping runs drive all accessible streets

• Record LIDAR, GPS, IMU (gyro + accel)

• SLAM: Simultaneous Localization and Mapping
• Given a map, we can localize
• Given accurate localization, we can build a map!
• Do it simultaneously!

• HD-Map: point clouds + annotations

360.here.com



• One way: PoseSLAM:
• Do ICP between overlapping scans
• Can use GPS/IMU to decide which scans overlap
• Optimize for 3D or 2D poses only
• Re-construct HD map from laser-scans 

afterwards

360.here.com

PoseSLAM: 
SLAM with ICP



4. The PoseSLAM Factor Graph

• Pose constraint = Factor
• MPE: maximize posterior 

• In the example:
• 4 constraints by matching successive scans
• 1 “loop closure” constraint
• 1 ”anchor” factor to give unique solution
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• If two assumptions hold:
• measurement function is linear
• Noise is zero-mean Gaussian

Linear Least Squares
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• If two assumptions hold:
• measurement function is linear
• Noise is zero-mean Gaussian

• Then we can solve via linear least squares.
• Example: x-coordinates only, minimize prediction error:

Linear Least Squares
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Pose constraints are nonlinear!

• Measurement prediction:

• Measurement error:

• Here log1 is a magic function converting a 
pose to three numbers
that measure how far a pose is from the origin 

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

1 technically, matrix logarithm, the inverse of the matrix exponential exp.



5. MAP = MPE = Nonlinear Optimization
• Two different approaches:

• Rotation averaging: first find rotations 
consistent with the measurements, 
then recover the translations linearly as 
discussed above. Sub-optimal, but a 
good initial estimate for…
• Nonlinear minimization: locally linearize 

the problem and solve the 
corresponding linear problem using 
least-squares, and iterate this until 
convergence

Image credit Tamás Terlaky

https://www.researchgate.net/profile/Tamas_Terlaky


Incremental Pose Parameters

• Given an estimate for a pose 𝑇 ∈ 𝑆𝐸(2), we can update it via

• With this we can approximate each factor linearly:

• Small print: For small increments, this works well, although we have to make sure to re-normalize the rotation afterwards. 
In practice, GTSAM uses something that holds even for large increments (an exponential map).



Solving a succession of linear problems

Summary:



6. Optimization with GTSAM

• The GTSAM toolbox (Georgia Tech Smoothing and Mapping) toolbox is 
a BSD-licensed C++ library based on factor graphs
• Website at http://gtsam.org.
• GTSAM exploits sparsity to be computationally efficient. 

http://gtsam.org/


C++ Example
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Python Example

T1 T2 T3

T4T5
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Optimization in 
Python



Summary

1. LIDAR is a key sensor for autonomous driving
2. Localization can be done with LIDAR, or image-based
3. PoseSLAM: a SLAM variant using ICP pose constraints
4. The PoseSLAM factor graph graphically shows the constraints
5. MAP/MPE solution can be done via nonlinear optimization
6. GTSAM is an easy way to optimize over poses in C++/MATLAB/python


