
CS 3630!

Lecture 14: 
Iterated Closest Point



Topics

1. Applications

2. Basic ICP Algorithm

3. ICP Variants

• Includes slides adapted from Marc 
Pollefeys and James Hayes.



Motivation

• 3D Scanners are becoming more and more prevalent

• 2D lasers now built into vacuuming robots

• Sensor of choice in autonomous vehicles

• Simple way to do SLAM



ICP in Robotics

https://www.youtube.com/watch?v=Ni8OFNyC5RY

https://www.youtube.com/watch?v=9rTkUZ7HV_o

https://www.youtube.com/watch?v=Ni8OFNyC5RY
https://www.youtube.com/watch?v=9rTkUZ7HV_o


ICP Outdoors

Gerstner Lab, Prague



Uber AVS Try it live: https://avs.auto/demo/index.html

https://avs.auto/demo/index.html


Digital Michelangelo

• http://graphics.stanford.edu/projects/mich/



Map of Rome
http://graphics.stanford.edu/projects/forma-urbis/database.html



Ikeuchi Lab 
Bayon Project 

• http://www.cvl.iis.u-tokyo.ac.jp/research/bayon/



Aligning 3D Data

• How to find corresponding points?

• How to calculate a transform between two point clouds?



Fitting and 
Alignment: Methods

• Global optimization / Search for parameters

• Least squares fit

• Robust least squares

• Other parameter search methods

• Hypothesize and test

• Generalized Hough transform

• RANSAC

• Iterative Closest Points (ICP)



Iterative Closest 
Points (ICP) 
Algorithm

Goal: estimate transform between two dense sets of points

1. Initialize transformation (e.g., compute difference in means and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters using least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

https://www.terra-drone.net/angola/lidar-powerlines/

https://www.terra-drone.net/angola/lidar-powerlines/


Aligning 3D Data

Assume closest points correspond to each other, 
compute the best transform…



Aligning 3D Data

… and iterate to find alignment
Iterated Closest Points (ICP) [Besl & McKay 92]

Converges if starting position “close enough“



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point
2. Compute transform using matches
3. Move points using transform
4. Repeat steps 1-3 until convergence



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x



Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ht=b
b) Solve using pseudo-inverse t* =H+b























−

−

−

−

=






























A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

(we can’t use inverse t=H-1b as H is not square -> pseudo-inverse)



Example: aligning boundaries in images
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling by 
center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding match(i) =
argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q



ICP Variants

• Classic ICP algorithm not real-time

• To improve speed: examine stages of ICP and evaluate proposed variants

• [Rusinkiewicz & Levoy, 3DIM 2001]

1. Selecting source points (from one or both meshes)

2. Matching to points in the other mesh

3. Weighting the correspondences

4. Rejecting certain (outlier) point pairs

5. Assigning an error metric to the current transform

6. Minimizing the error metric



ICP Variant –
Point-to-Plane Error Metric
• Using point-to-plane distance instead of point-to-point lets flat regions slide along 

each other more easily [Chen & Medioni 91]



Finding Corresponding Points

• Finding closest point is most expensive stage of ICP
• Brute force search – O(n)

• Spatial data structure (e.g., k-d tree) – O(log n)

• Voxel grid – O(1), but large constant, slow preprocessing



Finding Corresponding Points

• For range images, simply project point [Blais 95]
• Constant-time, fast

• Does not require precomputing a spatial data structure



High-Speed ICP Algorithm

• ICP algorithm with projection-based correspondences, point-to-plane 
matching can align meshes in a few tens of ms.
(cf. over 1 sec. with closest-point)

[Rusinkiewicz & Levoy, 3DIM 2001]



Summary

1. Applications are plentiful

2. Basic ICP Algorithm is simple (but slow)

3. ICP Variants can speed up


