
CS 3630!

Lecture 11: 
Monte Carlo Inference



Topics

• Review: continuous models
• Sampling as Approximation
• Importance Sampling
• Particle Filters and Monte Carlo Localization



Motivation

• Robots live in a continuous world
• To localize the robot, we need probabilistic inference
• Many of the concepts we discussed before generalize
• In many cases exact inference is intractable -> sampling
• A popular class of algorithm: Particle filters & Monte Carlo Localization



Remember: the Bayes Filter

• Two phases: a. Prediction Phase
b. Measurement Phase



Belief representation: how do we represent 
our belief of where the robot is located?

Continuous map with single 
hypothesis probability 
distribution 

Continuous map with multiple 
hypotheses probability 
distribution 

Discretized map with multiple 
hypotheses probability 
distribution 

Discretized topological map 
with with multiple hypotheses 
probability distribution 



Continuous Bayes Nets

• As before, but now states 
S, observations O, and 
action A can all be 
continuous.
• Terminology: x, z, u
• Hence: measurement 

models and state transition 
models are continuous.
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Continuous Measurement Models

• We need a measurement function and a noise model
• Example: bearing to a landmark l:



Continuous Motion Models
• Similar for state transition, but we now have a motion model
• Motion model g(x,u) takes state x and control u
• Multivariate noise model with covariance Q:



Sampling for 
simulation

• The infamous 
“banana density”
• Happens because 

we also sample 
heading \theta
• Clearly non-

Gaussian!



Sampling to Approximate Densities

• As banana distribution illustrates, densities can become arbitrarily 
complex, even when noise models are Gaussian
• Issue is nonlinear measurement and noise models
• One way out: Parzen window density estimation (mixtures!)

• Other way out: sampling!

(Wikipedia)



Probability of Robot Location

P(Robot Location)

X

Y

State space = 2D, infinite #states



Sampling as Representation

P(Robot Location)

X

Y



Sampling 
Advantages

• Arbitrary densities
•Memory = O(#samples)
• Only in “Typical Set”
• Great visualization tool !

•minus: Approximate



Importance Sampling

• Additionally, use weights to represent a density

• Generic importance sampling idea:
• We want to sample from p(x), but we don’t know how
• sample x(r) from q(x), which some way we can sample from
• give each sample x(r) an importance weight equal to p(x)/q(x)

• Specific example: Bayes law:
• Sample x(r) from prior p(x)
• weight each sample x(r) with likelihood l(x;z)



Importance Sampling
• Sample x(r) from q(x)
• p r = p(x(r))/q(x(r))

Image by MacKay

p(x)
q(x)



Example: Bayes law via importance sampling

{x(r),y(r)~Prior(x,y), wr=P(Z|x(r),y(r)) }



Particle Filters & Monte Carlo Localization

• Bayes filter using importance sampling for Bayes law
• First appeared in 70’s, re-discovered by Kitagawa, 
• Isard & Blake rediscovered in computer vision, as CONDENSATION
• Monte Carlo Localization in robotics



Particles

• Each particle is a guess about where the robot might be

𝑥
𝑦
𝜃



1. Prediction Phase

u

Motion Model

P(xt|   ,u)



2. Measurement Phase

Sensor Model

P(Z|xt)



3. Resampling Step

O(N)



Monte Carlo Localization (ICRA 1999)

weighted S’
k SkS’

kSk-1

Predict Weight Resample



Monte Carlo Localization



Monte Carlo 
Localization in NMAH
(published CVPR’99)
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Uniform distribution
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Sense
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Before resampling
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After resampling



29

Sense 



30

Before resampling 



31

After resampling
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Move



33

Sense 
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Before resampling
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After resampling
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Move 
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Sense
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Before resampling



39

After resampling



40

Move 



Summary

• Continuous models are for real robots
• Sampling can approximate densities
• Importance Sampling implements Bayes law
• Monte Carlo Localization uses simulation and 

resampling to implement a Bayes filter

• Bonus slides: you can interpret a particle filter as using 
a mixture model as predictive density



Bonus slides: 
Particle filter prediction as a mixture density



Particle Filter Tracking

Xt-2 Xt-1State

Zt-2 Zt-1Measurement

Xt

Zt

Monte Carlo Approximation of Filtering Density:



Bayes Filter and Particle Filter

Monte Carlo Approximation:

Recursive Bayes Filter Equation:
Motion Model

Predictive Density



Particle Filter

π(3)π(1)
π(2)

Empirical predictive density = Mixture Model


