Deep Stereo Monocular, 2-view, N-view

Frank Dellaert, x476 Fall 2021

Left input image

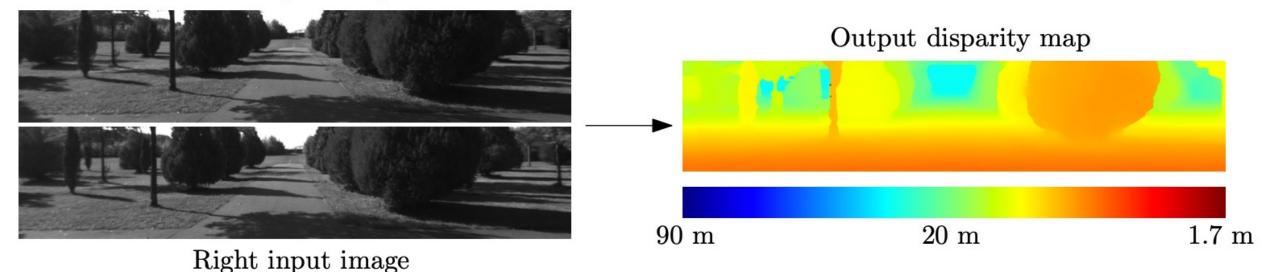


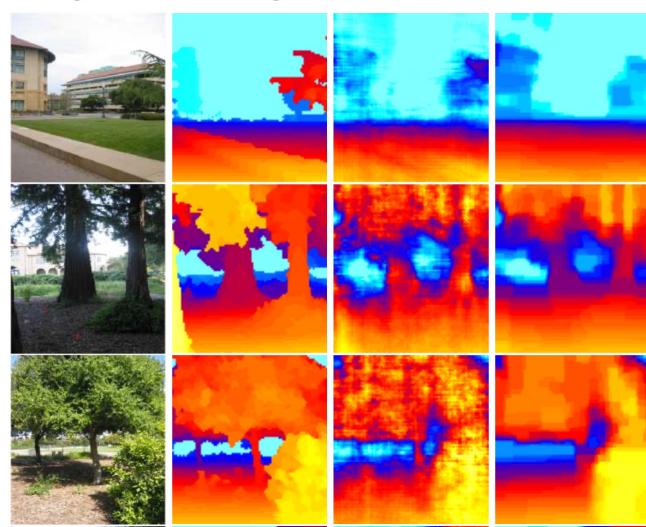
Image from Žbontar & LeCun, 2016

Learning Depth from Single Monocular Images

NIPS 2005 (!)

Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng

- A whole different beast: monocular depth
- Not deep: Markov random field (MRF)
- Learns a relatively small number of parameters



Unsupervised Monocular Depth Estimation with Left-Right Consistency

CVPR 2017

Clément Godard

Oisin Mac Aodha
University College London

http://visual.cs.ucl.ac.uk/pubs/monoDepth/

Gabriel J. Brostow

Target I^r I^l I^r I^l Output \tilde{I}^r \tilde{I}^l \tilde{I}^r \tilde{I}^l Sampler Disparity d^r d^l d^r d^l I^r $I^$

- LR- consistency
- Unsupervised monocular depth

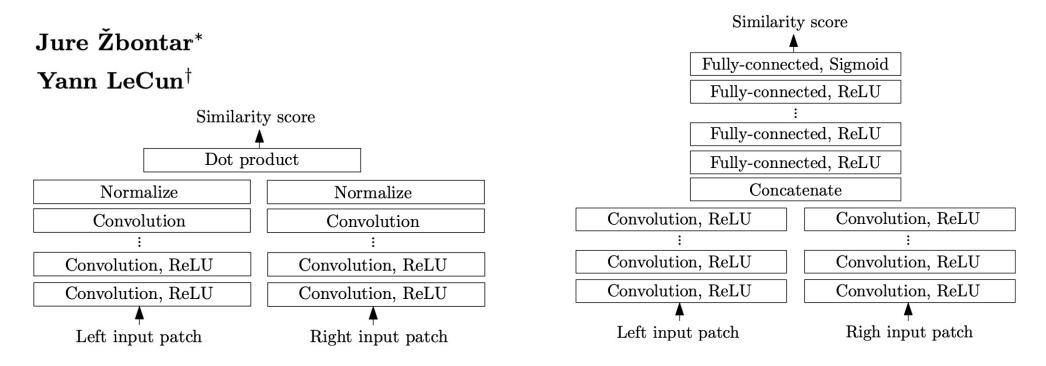
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer

René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

PAMI 2020

First Idea: matching costs

Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches



- Two versions: fast, and accurate
- Tries to make distance between positive examples (matched patches) and negative (incorrectly matched patches) large

Results

- On KITTI (2012) dataset, in October 2015
- percentage of misclassified pixels

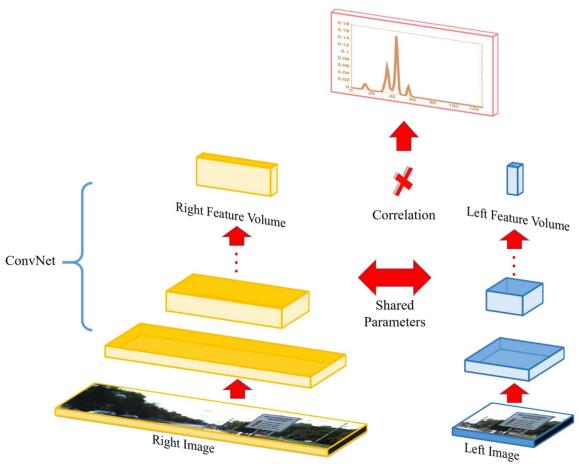
Rank	Method		Setting	Error	Runtime
1	MC-CNN-acrt	Accurate architecture		2.43	67
2	Displets	Güney and Geiger (2015)		2.47	265
3	MC-CNN	Žbontar and LeCun (2015)		2.61	100
4	PRSM	Vogel et al. (2015)	F, MV	2.78	300
	MC-CNN-fst	Fast architecture		2.82	0.8
5	SPS-StFl	Yamaguchi et al. (2014)	F, MS	2.83	35
6	VC- SF	Vogel et al. (2014)	F, MV	3.05	300
7	Deep Embed	Chen et al. (2015)		3.10	3
8	JSOSM	Unpublished work		3.15	105
9	OSF	Menze and Geiger (2015)	F	3.28	3000
10	CoR	Chakrabarti et al. (2015)		3.30	6

Similar idea:

Efficient Deep Learning for Stereo Matching

CVPR 2016

Wenjie Luo Alexander G. Schwing Raquel Urtasun Department of Computer Science, University of Toronto

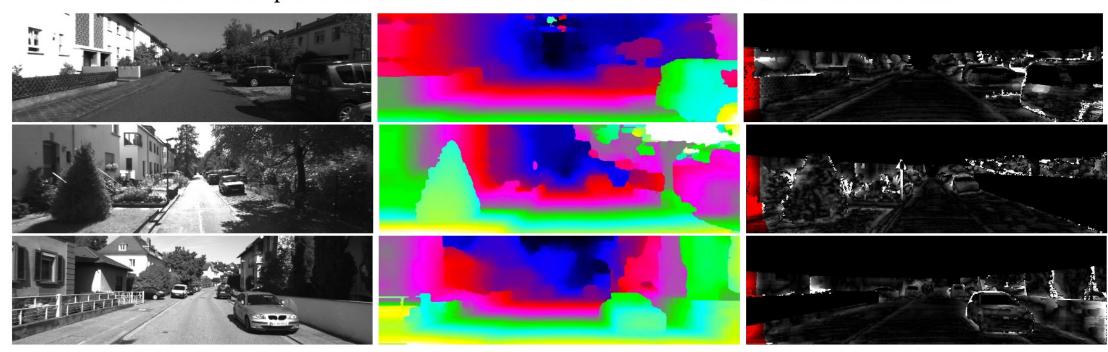


- CNN for feature representation, shared parameters
- Probability density over disparities

Results (percentage over threshold)

	> 2 pixels		> 3 pixels		> 4 pixels		> 5 pixels		End-Point		Runtime
	Non-Occ	All	Non-Occ	All	Non-Occ	All	Non-Occ	All	Non-Occ	All	(s)
StereoSLIC [26]	5.76	7.20	3.92	5.11	3.04	4.04	2.49	3.33	0.9 px	1.0 px	2.3
PCBP-SS [26]	5.19	6.75	3.40	4.72	2.62	3.75	2.18	3.15	0.8 px	1.0 px	300
SPS-st [27]	4.98	6.28	3.39	4.41	2.72	3.52	2.33	3.00	0.9 px	1.0 px	2
Deep Embed [7]	5.05	6.47	3.10	4.24	2.32	3.25	1.92	2.68	0.9 px	1.1 px	3
MC-CNN-acrt [30]	3.90	5.45	2.43	3.63	1.90	2.85	1.64	2.39	0.7 px	0.9 px	67
Displets v2 [12]	3.43	4.46	2.37	3.09	1.97	2.52	1.72	2.17	0.7 px	0.8 px	265
Ours(19)	4.98	6.51	3.07	4.29	2.39	3.36	2.03	2.82	0.8 px	1.0 px	0.7

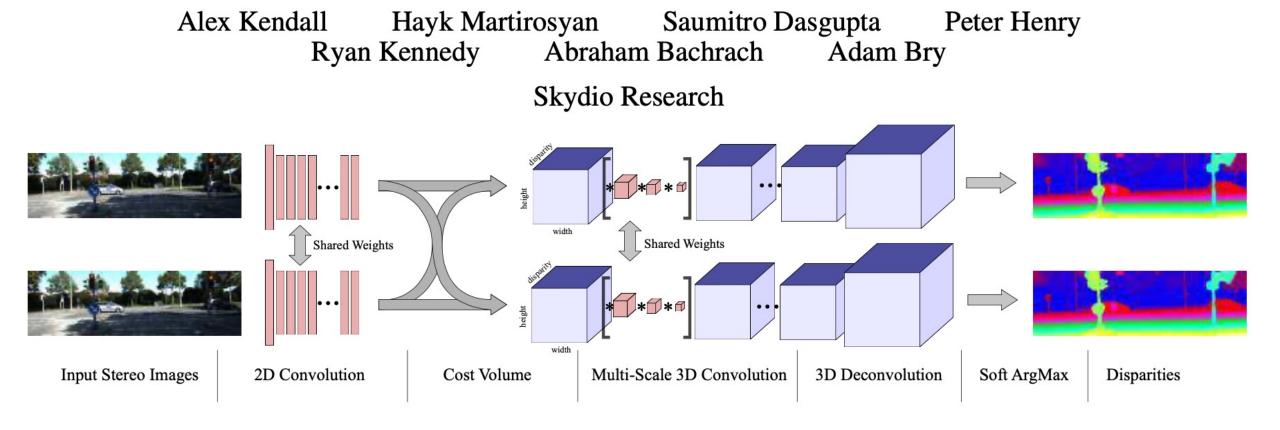
Table 3: Comparison to stereo state-of-the-art on the test set of the KITTI 2012 benchmark.



Cost Volume Aggregation

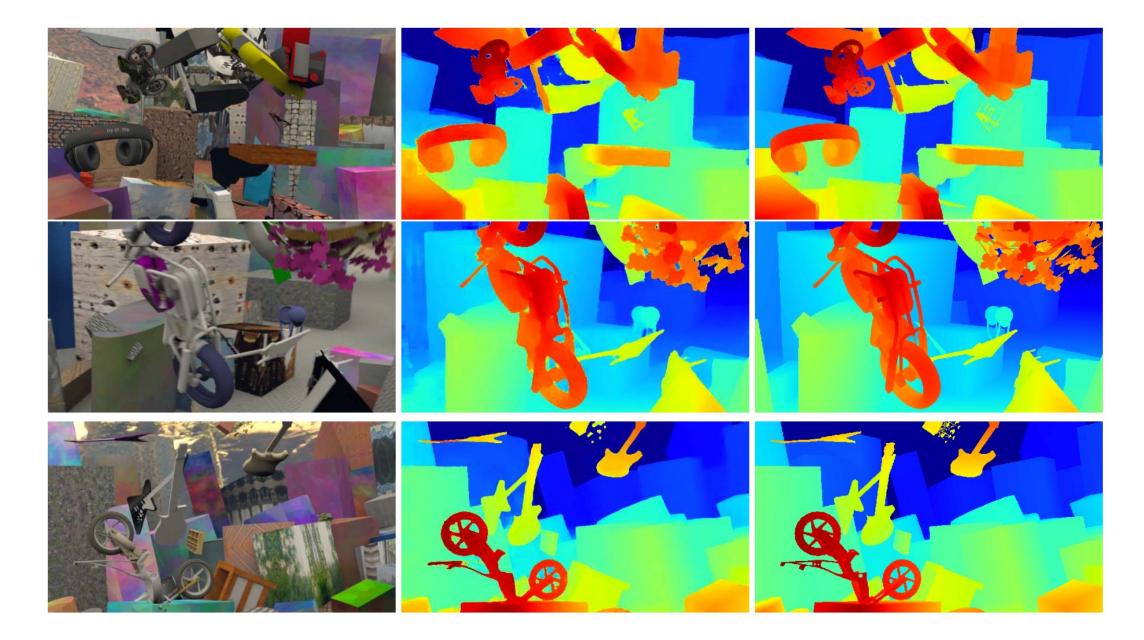
End-to-End Learning of Geometry and Context for Deep Stereo Regression

ICCV 2017



CNN for features, shared weights, then 3D convolutions

Results on Scene Flow Dataset (from CVPR 2016)



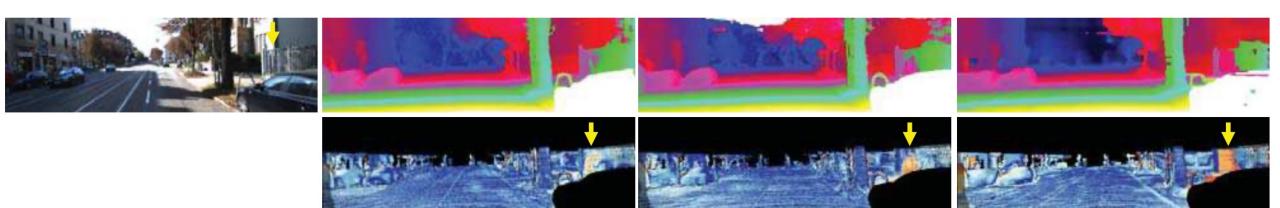
Pyramid Stereo Matching Network

CVPR 2018

Jia-Ren Chang Yong-Sheng Chen
Department of Computer Science, National Chiao Tung University, Taiwan

- Architectural improvements: spatial pyramid pooling
- Results on KITTI 2015, March 2018 leaderboard:

Rank	Method	All (%)			Noc (%)			Runtime (s)
		D1-bg	D1-fg	D1-all	D1-bg	D1-fg	D1-all	Rullulle (8)
1	PSMNet (ours)	1.86	4.62	2.32	1.71	4.31	2.14	0.41
3	iResNet-i2e2 [14]	2.14	3.45	2.36	1.94	3.20	2.15	0.22
6	iResNet [14]	2.35	3.23	2.50	2.15	2.55	2.22	0.12
8	CRL [21]	2.48	3.59	2.67	2.32	3.12	2.45	0.47
11	GC-Net [13]	2.21	6.16	2.87	2.02	5.58	2.61	0.90



Hierarchical Deep Stereo Matching on High-resolution Images

CVPR 2019

Gengshan Yang¹*, Joshua Manela², Michael Happold², Deva Ramanan^{1,2}
¹Carnegie Mellon University, ²Argo AI

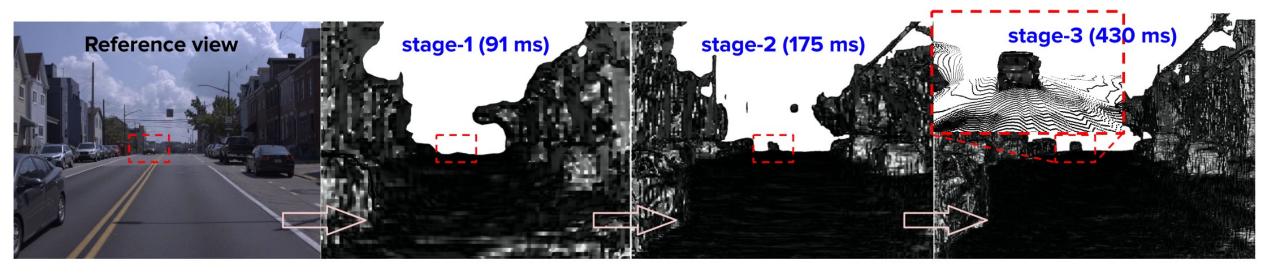


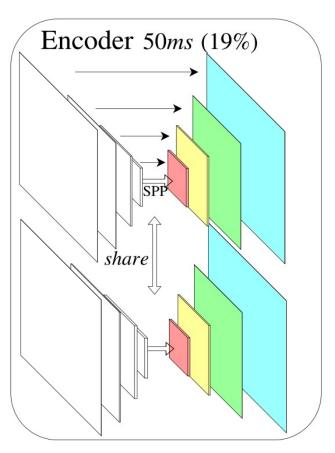
Figure 1: Illustration of on-demand depth sensing with a coarse-to-fine hierarchy on the proposed dataset. Our method (HSM) captures the coarse layout of the scene in 91 milliseconds, finds the far-away car (shown in the red box) in 175 ms, and recovers the details of the car given extra 255 ms.

• High-resolution for self-driving: Z=f B/Z, increase f!

Yang18cvpr architecture figure:

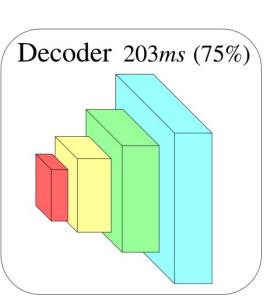
Reference & Target Image

 $H \times W \times 3$



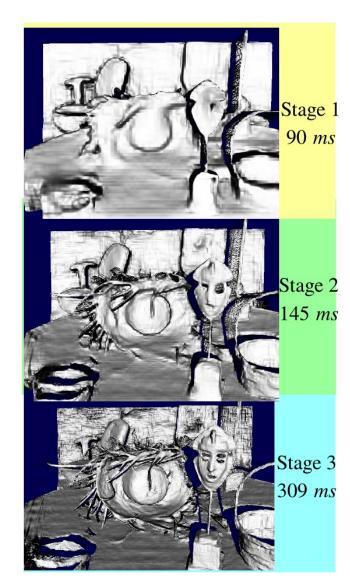
Pyramid Features

$$\frac{H \times W}{8, 16, 32, 64} \times C_k$$



Pyramid Cost Volumes

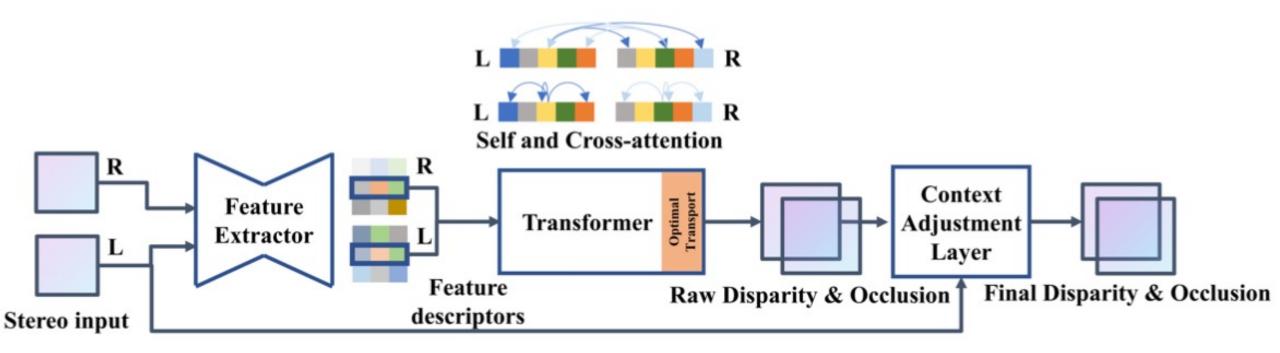
 $\frac{H \times W \times D_k}{\{8, 16, 32, 64\}}$



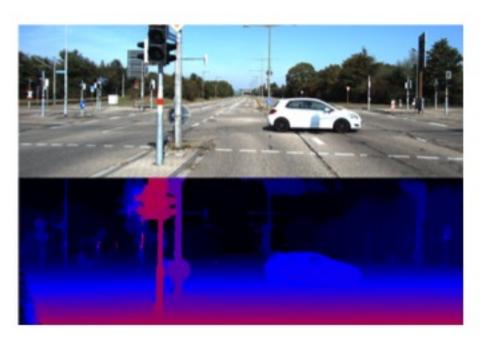
Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective with Transformers ICCV 2021

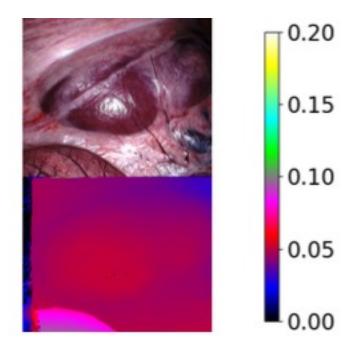
Zhaoshuo Li, Xingtong Liu, Nathan Drenkow, Andy Ding, Francis X. Creighton, Russell H. Taylor, and Mathias Unberath

Johns Hopkins University



Results for STTR

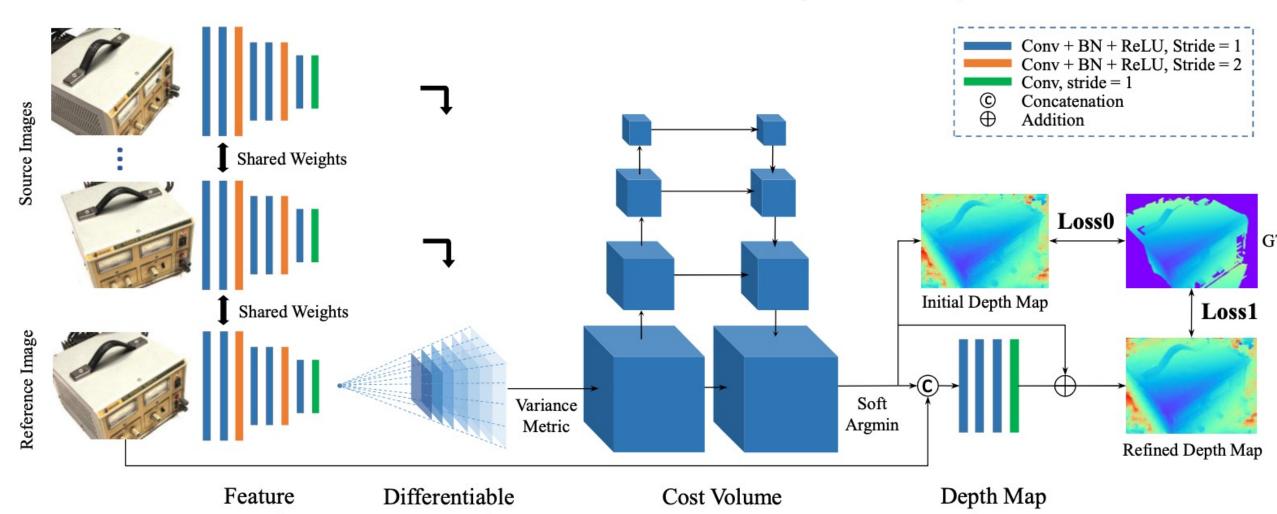




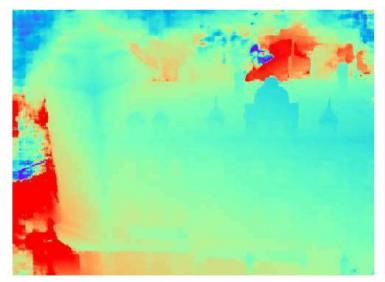
MVSNet: Depth Inference for Unstructured Multi-view Stereo

ECCV 2018

Yao Yao¹, Zixin Luo¹, Shiwei Li¹, Tian Fang², and Long Quan¹

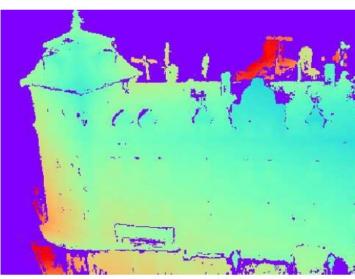


MVSNet results



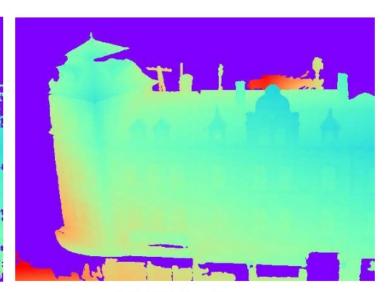
(a) Inferred depth map

(d) Reference image



(b) Filtered depth map

(e) Fused point cloud



(c) GT depth map

(f) GT point cloud

MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo

ICCV 2021

Anpei Chen*1 Zexiang Xu*2

Fuqiang Zhao¹

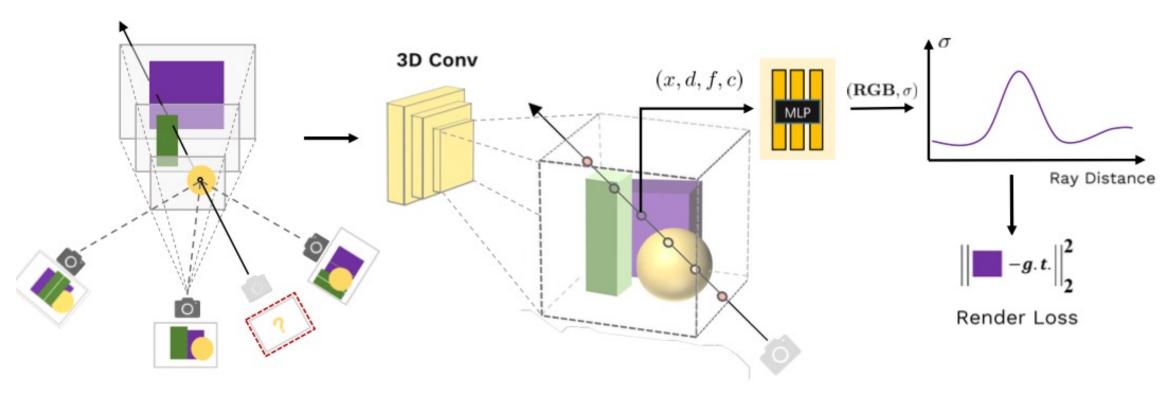
Xiaoshuai Zhang³ Hao Su³

Fanbo Xiang³

Jingyi Yu1 ¹ ShanghaiTech University

² Adobe Research

³ University of California, San Diego



a) Cost Volume

b) Neural Encoding Volume

c) Volume Renderer

MVSNeRF Results

