

Credits

- Images and formulas from Szeliski
- Second half from CVPR talk by Zhaoyang Lv

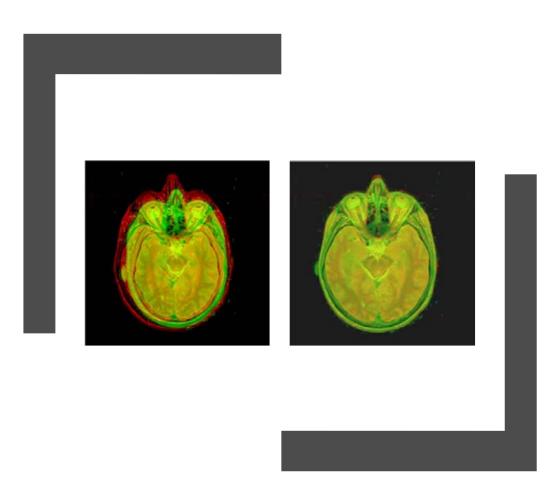
 Taking a Deeper Look at the Inverse Compositional
 Algorithm, Zhaoyang Lv, Frank Dellaert, James M. Rehg,
 Andreas Geiger, CVPR 2019

Motivating problem: Video Stabilization

Original

Stabilized

Dense Motion Estimation



- Widely used!
 - Aligning images
 - Motion in video
 - Video Stabilization
- We need:
 - Error metric
 - Search technique
 - Full search
 - Hierarchical
 - Incremental

Outline

- Error metric/full search
- Hierarchical search
- Incremental refinement
 - Parametric Motion
- Deep Learning Approach (CVPR19)

Translational Alignment

- Shift image I₁ with respect to template I₀
- Before, feature-based error:

$$E_{\text{LS}} = \sum_{i} \| \boldsymbol{r}_{i} \|^{2} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_{i}; \boldsymbol{p}) - \boldsymbol{x}'_{i} \|^{2},$$

Translational Alignment

- Shift image I₁ with respect to template I₀
- Before, feature-based error:

$$E_{\text{LS}} = \sum \| \boldsymbol{r}_i \|^2 = \sum \| \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i' \|^2$$

Now, image-based error:

$$E_{\text{SSD}}(\boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2 = \sum_{i} e_i^2,$$

SSD

$$E_{\text{SSD}}(\boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2 = \sum_{i} e_i^2,$$

- Sum of Squared Differences
- Assumes: brightness constancy
- If u fractional: interpolation needed
 - Bilinear (fast, good)
 - Bicubic (slower, slightly better)

Robust Error Metrics

$$E_{\text{SAD}}(\boldsymbol{u}) = \sum_{i} |I_1(\boldsymbol{x}_i + \boldsymbol{u}) - I_0(\boldsymbol{x}_i)| = \sum_{i} |e_i|.$$

- Quadratic error is unforgiving!
- Absolute error (SAD): allows for outliers
- Differentiable robust error metrics exist

Dealing with Boundary Conditions

- Should not count pixels outside
- Add two "window" functions
- Windowed SSD metric:

$$E_{\text{WSSD}}(\boldsymbol{u}) = \sum_{i} \underline{\boldsymbol{w}}_{0}(\boldsymbol{x}_{i}) \underline{\boldsymbol{w}}_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) [I_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) - I_{0}(\boldsymbol{x}_{i})]^{2},$$

Invariant to overlap: Root mean square:

$$A = \sum_{i} w_0(\boldsymbol{x}_i) w_1(\boldsymbol{x}_i + \boldsymbol{u}) \qquad RMS = \sqrt{E_{\text{WSSD}}/A}$$

Violations of Brightness Constancy

Estimate Bias and Gain

$$I_1(\boldsymbol{x} + \boldsymbol{u}) = (1 + \alpha)I_0(\boldsymbol{x}) + \beta,$$

$$E_{\mathrm{BG}}(\boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - (1 + \alpha)I_0(\boldsymbol{x}_i) - \beta]^2$$

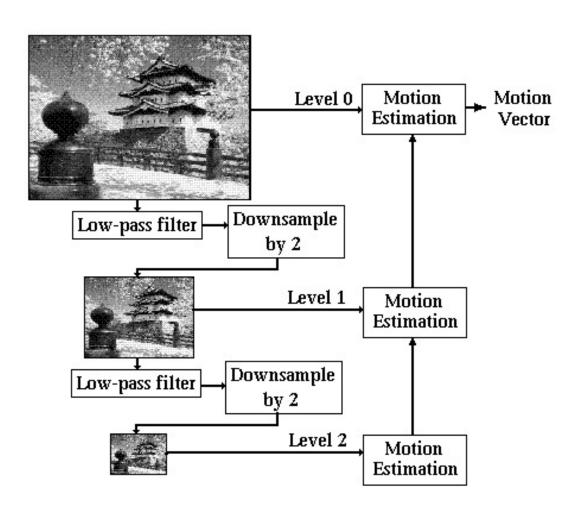
Normalized Cross-Correlation

$$E_{\mathrm{CC}}(\boldsymbol{u}) = \sum_{i} I_0(\boldsymbol{x}_i) I_1(\boldsymbol{x}_i + \boldsymbol{u}).$$

$$E_{\text{NCC}}(\boldsymbol{u}) = \frac{\sum_{i} [I_0(\boldsymbol{x}_i) - \overline{I_0}] [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - \overline{I_1}]}{\sqrt{\sum_{i} [I_0(\boldsymbol{x}_i) - \overline{I_0}]^2} \sqrt{\sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - \overline{I_1}]^2}}$$

Hierarchical Motion Estimation

- Build an image pyramid:
 - Low-pass
 - Decimate
- Recursively estimate motion:
 - Estimate motion at highest level
 - Use result as initial estimate at lower level



Sub-pixel Refinement

• Taylor expansion of SSD in sub-pixel update Δu :

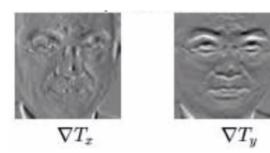
$$E_{\text{LK-SSD}}(\boldsymbol{u} + \Delta \boldsymbol{u}) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u} + \Delta \boldsymbol{u}) - I_0(\boldsymbol{x}_i)]^2$$
(8.33)

$$\approx \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) + \boldsymbol{J}_1(\boldsymbol{x}_i + \boldsymbol{u})\Delta \boldsymbol{u} - I_0(\boldsymbol{x}_i)]^2 \quad (8.34)$$

$$= \sum_{i} [\boldsymbol{J}_{1}(\boldsymbol{x}_{i} + \boldsymbol{u})\Delta\boldsymbol{u} + e_{i}]^{2}, \qquad (8.35)$$

where J is the Jacobian, i.e., gradients at x_i+u :

$$\boldsymbol{J}_1(\boldsymbol{x}_i + \boldsymbol{u}) = \nabla I_1(\boldsymbol{x}_i + \boldsymbol{u}) = (\frac{\partial I_1}{\partial x}, \frac{\partial I_1}{\partial y})(\boldsymbol{x}_i + \boldsymbol{u})$$
(8.36)



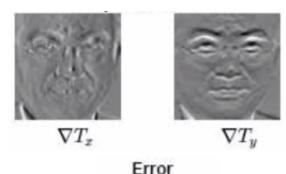
Solve using Normal Equations

$$A\Delta u = b$$

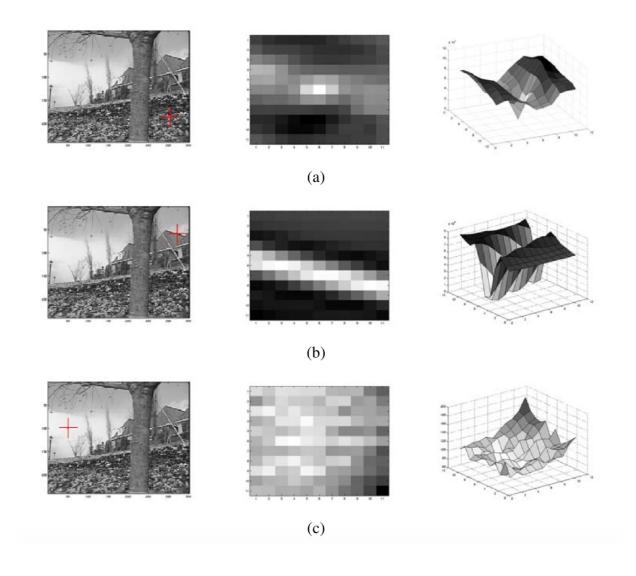
$$m{A} = \sum_i m{J}_1^T (m{x}_i + m{u}) m{J}_1 (m{x}_i + m{u}) \qquad \quad m{b} = -\sum_i e_i m{J}_1^T (m{x}_i + m{u})$$

$$\boldsymbol{b} = -\sum_{i} e_{i} \boldsymbol{J}_{1}^{T} (\boldsymbol{x}_{i} + \boldsymbol{u})$$

- A is Hessian or "information matrix", same as Harris uses!
- RHS b is just dot product of gradient images with error ->
- Remember: feature-based translation: just mean of flow vectors!



Aperture Problems and Harris



Revisiting Video Stabilization

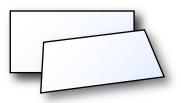
Motion Models: Translation

- * Translation in x and y
- * 2 DOF
- * Still very shaky

Motion Models: Similarity

- * Translation in x and y
- Uniform scale and rotation
- * 4 DOF
- * Not shaky, but wobbly

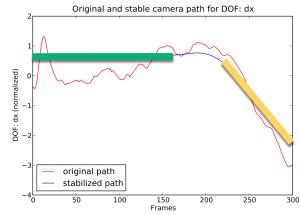
Motion Models: Homography

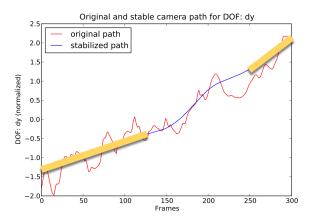


- Translation in x and y, scale and rotation
- * Skew and perspective
- * 8 DOF
- * Stable

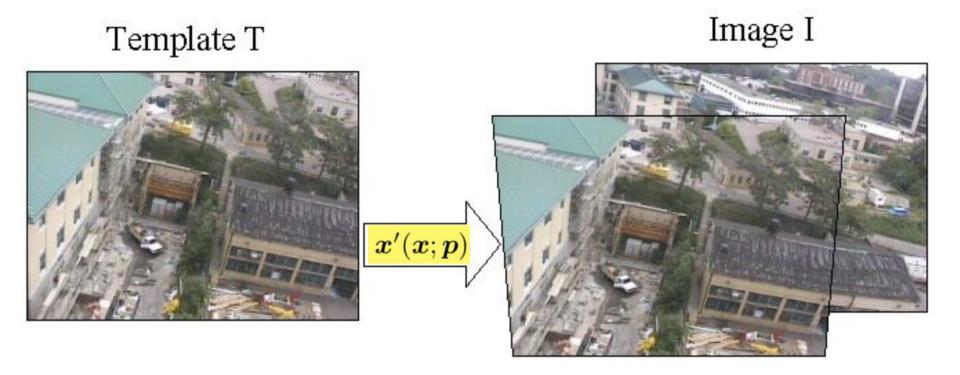
Path Smoothing

- Goal: Approximate original path with stable one
- Cinematography inspired:Properties of a stable path?
 - ∗ Tripod → Constant segment
 - Dolly or pan → Linear segment
 - ∗ Ease in and out transitions→ Parabolic segment





Parametric Motion



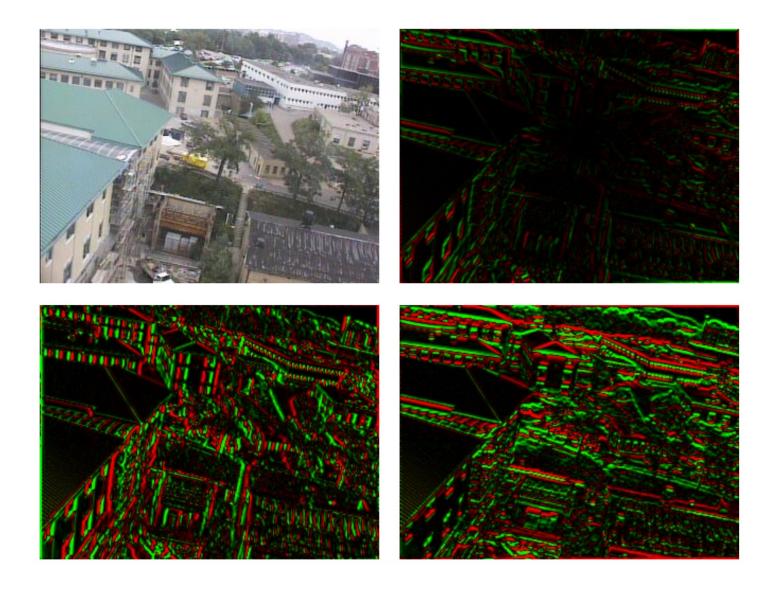
E.g., image-based homography estimation

$$E_{ ext{LK-PM}}(\boldsymbol{p} + \Delta \boldsymbol{p}) = \sum_{i} [I_1(\boldsymbol{x}'(\boldsymbol{x}_i; \boldsymbol{p} + \Delta \boldsymbol{p})) - I_0(\boldsymbol{x}_i)]^2$$

 $\approx \sum_{i} [I_1(\boldsymbol{x}'_i) + \boldsymbol{J}_1(\boldsymbol{x}'_i)\Delta \boldsymbol{p} - I_0(\boldsymbol{x}_i)]^2$

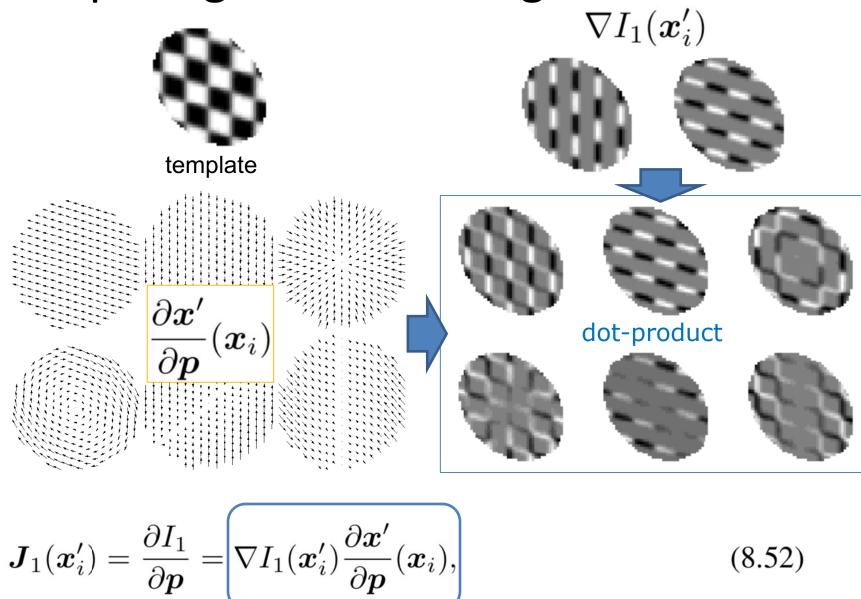
Dellaert & Collins, 1999, Fast Image-Based Tracking by Selective Pixel Integration

"Jacobian Images"



Dellaert & Collins, 1999, Fast Image-Based Tracking by Selective Pixel Integration

Computing Jacobian Images



Dellaert & Collins, 1999, Fast Image-Based Tracking by Selective Pixel Integration

Compositional and Inverse Compositional

Compare three variants:

- Original:
$$\sum_{i} [I_1(x'(x_i; p + \Delta p)) - I_0(x_i)]^2$$
 (8.49)

– Compositional:

– Inverse Comp:

$$\sum_{i} [\tilde{I}_{1}(\tilde{\boldsymbol{x}}(\boldsymbol{x}_{i}; \Delta \boldsymbol{p})) - I_{0}(\boldsymbol{x}_{i})]^{2}$$
(8.60)

$$\sum_{i} [\tilde{I}_{1}(\boldsymbol{x}_{i}) - I_{0}(\tilde{\boldsymbol{x}}(\boldsymbol{x}_{i}; \Delta \boldsymbol{p}))]^{2}$$
(8.64)

- In compositional approach we warp the image I_1 and solve for an incremental update.
- Inverse compositional: search for incremental update to template instead
 - Jacobians and Hessian can now be precomputed

The Inverse Compositional Algorithm

[S. Baker and I. Matthews, 04]

$$\mathbf{r}_k(\mathbf{0}) = \mathbf{I}(\boldsymbol{\xi}_k) - \mathbf{T}(\mathbf{0})$$

$$\boldsymbol{\Delta}\boldsymbol{\xi} = (\mathbf{J}^T\mathbf{W}\mathbf{J} + \lambda\operatorname{diag}(\mathbf{J}^T\mathbf{W}\mathbf{J}))^{-1}\mathbf{J}^T\mathbf{W}\,\mathbf{r}_k(\mathbf{0})$$

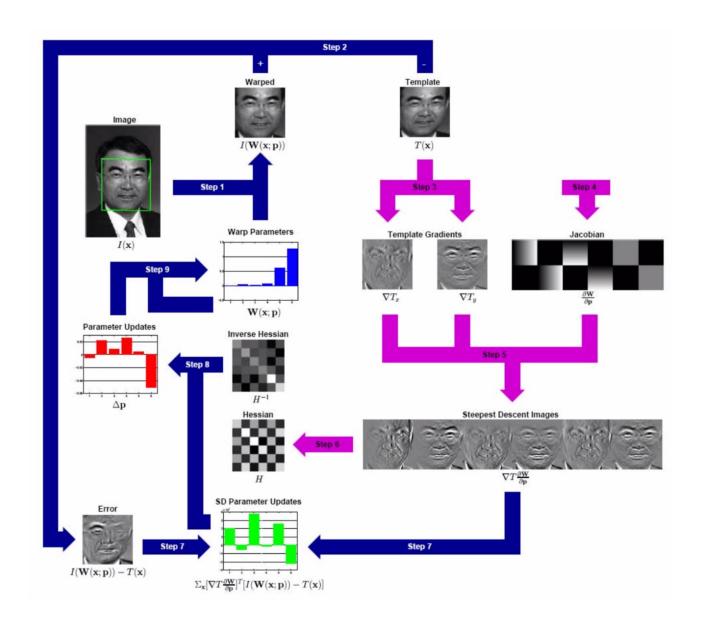
$$\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_k \circ (\Delta\boldsymbol{\xi})^{-1}$$

$$\mathbf{W} \text{ Weight matrix}$$

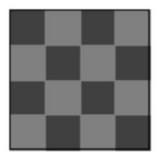
$$\lambda\operatorname{diag}(\mathbf{J}^T\mathbf{W}\mathbf{J}) \text{ Damping: very frequently used in non-linear optimization to make sure gradients are valid;}$$

"Levenberg-Marquardt"

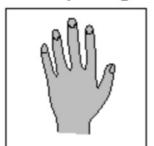
Inverse Compositional Approach



Layered Motion

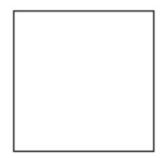


Intensity map



Intensity map

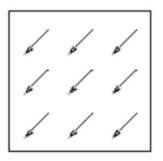
Frame 1



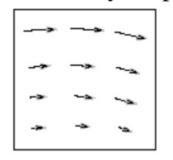
Alpha map

Alpha map

Frame 2



Velocity map

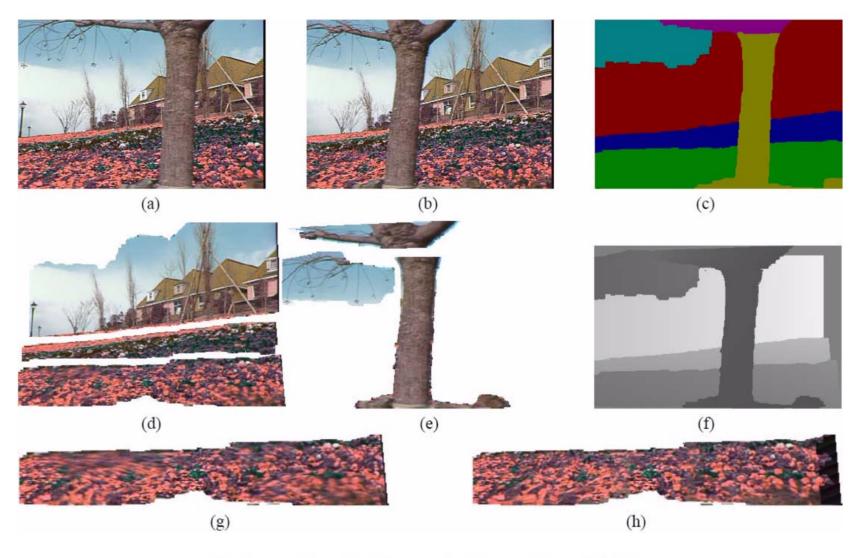


Velocity map

Frame 3

- One type of assumption to "regularize" optical flow
- Estimate FG and BG layers

Layered Motion Results



(Baker, Szeliski, and Anandan 1998

Optical Flow: fully non-parametric

- Fully non-parametric model of motion
- N pixels -> N flow vectors -> 2N parameters
- Need some smoothness assumptions!
- Hard to deal with occlusion

Taking a Deeper Look at the Inverse Compositional Algorithm

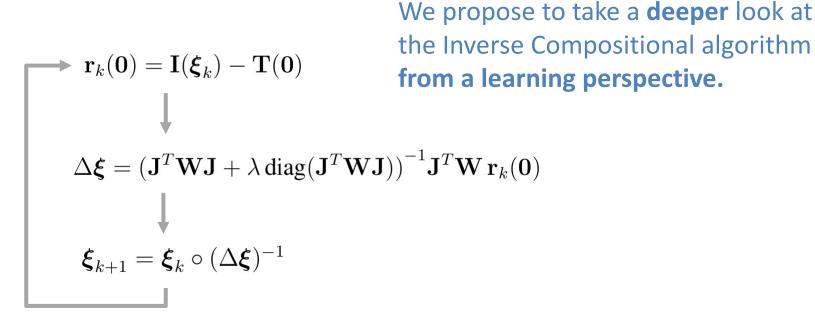
Zhaoyang Lv¹, Frank Dellaert¹, James M. Rehg¹, Andreas Geiger²

¹Georgia Institute of Technology

²Autonomous Vision Group, MPI-IS and University of Tübingen

The Inverse Compositional Algorithm

[S. Baker and I. Matthews, 04]



Take a Deeper Look at the Inverse Compositional algorithm

Contribution (A): Two-view Feature Encoder

$$\mathbf{r}_{k} = \mathbf{I}_{\theta}(\boldsymbol{\xi}_{k}) \mathbf{I} - \mathbf{T}_{\theta}(\mathbf{0}) \mathbf{I}$$

$$\Delta \boldsymbol{\xi} = (\mathbf{J}^{T} \mathbf{W} \mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{T} \mathbf{W} \mathbf{J}))^{-1} \mathbf{J}^{T} \mathbf{W} \mathbf{r}_{k}(\mathbf{0}) ;$$

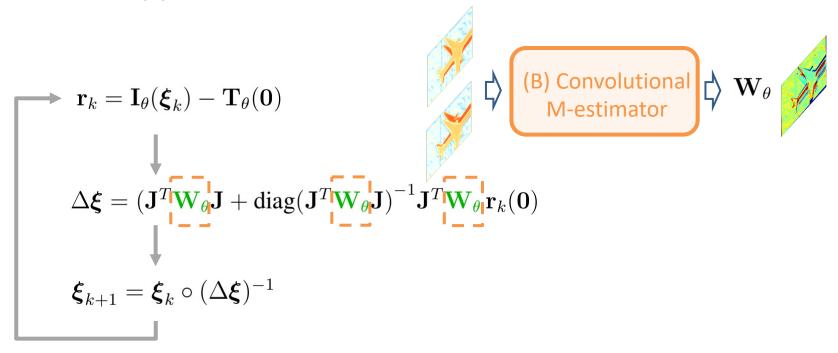
$$\boldsymbol{\xi}_{k+1} = \boldsymbol{\xi}_{k} \circ (\Delta \boldsymbol{\xi})^{-1}$$

$$(A) \text{ Two-View Feature Encoder}$$

$$\boldsymbol{\xi}_{k} = \mathbf{I}_{\theta}(\boldsymbol{\xi}_{k}) \mathbf{I}_{\theta} = \mathbf{I}_{\theta}(\mathbf{0}) \mathbf{I}_{\theta}(\mathbf{0}) \mathbf{I}_{\theta}(\mathbf{0}) \mathbf{I}_{\theta} = \mathbf{I}_{\theta}(\mathbf{0}) \mathbf{I}_{\theta}(\mathbf{$$

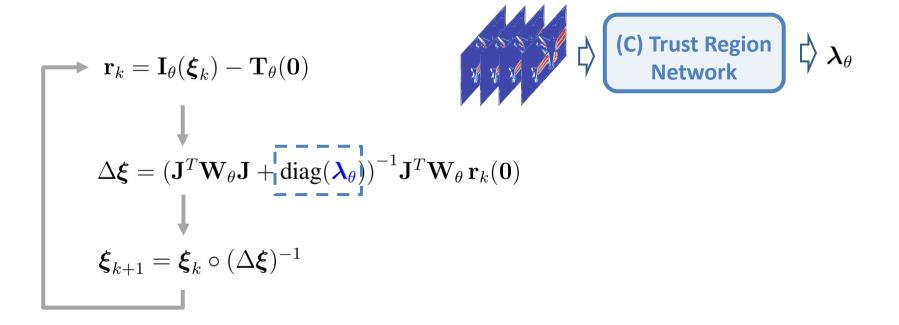
Take a Deeper Look at the Inverse Compositional algorithm

Contribution (B): Convolutional M-estimator

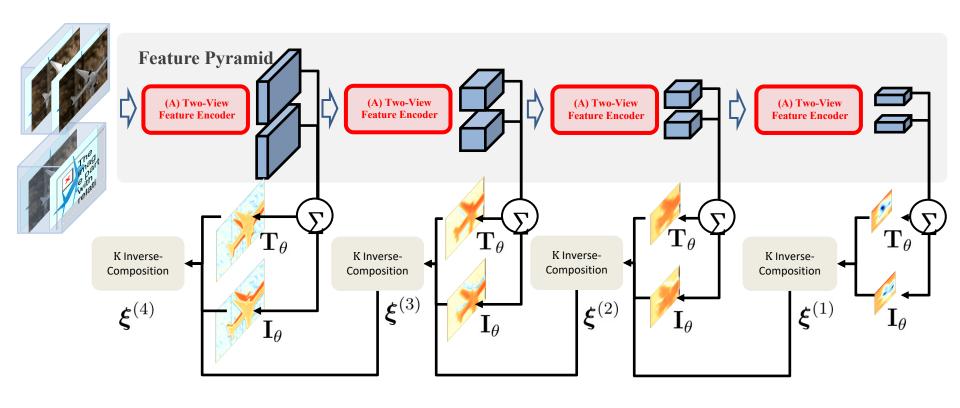


Take a Deeper Look at the Inverse Compositional algorithm

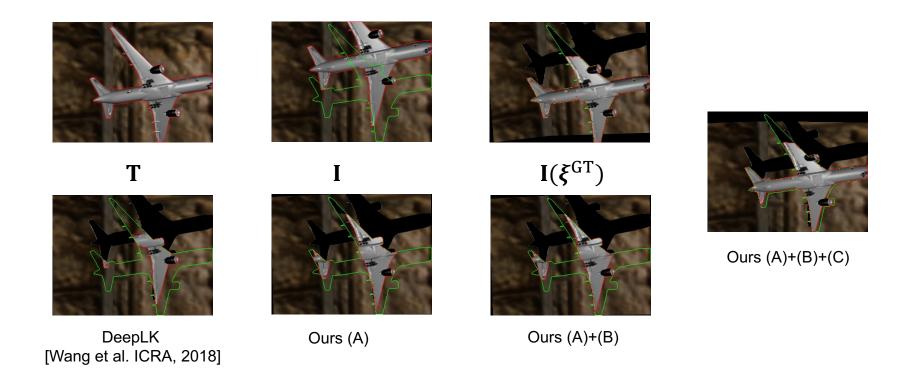
Contribution (C): Trust Region Network



Coarse-to-Fine Inverse Compositional Algorithm



Visualization of Iterative 3D Rigid Motion Alignment



Conclusion

We have taken a deeper look at the inverse compositional algorithm by reformulating it with

- (A) Two-view Feature Encoder
- (B) Convolutional M-estimator
- (C) Trust Region Network

The proposed solution is **learnable**, **accurate**, **small**, and **fast** in inference.