A
n

2. Image Formation

4. Features

5. Segmentation 8. Motion

11. Stereo

9. Stitching

12. 3D Shape 13. Image-based Rendering 14. Recognition

Feature-based Image Alignment

* Geometric image registration
— 2D or 3D transforms between them
— Special cases: pose estimation, calibration

2D Alignment

* 3 photos
 Translational model

2D Alignment

o E
P o Y

R 3 3
R ’

- -
e -
| s
—
: e,
e
|
. o
5 N
s
- - 5
:
. V‘\‘ :
.
a -
. -
: . -
i 5

> 3 2
4

- \ of
o 1S
.v ’ - ‘_}-
‘mf A e

Bre
T L a
* Input:
— A set of matches {(x;, x;')}
— A parametric model f(x; p)
* Qutput:
— Best model p*
e How?

2D translation estimation

) ““‘M T
°Input
— Set of matches {(xq, X{"), (X3, X5°), (X3, X3”), (X4, X4')}
— Parametric model: f(x; t) = x + t
— Parameters p ==t, location of origin of Ain B
Output:
— Best model p*

2D translation estimation

4‘"""." ‘

¢ - v
‘.
=
-
. .
)
=
-
. .
:
LAY
- & A
A
. .
T 3
- -+

R 2.2 7
" -

* Input:
— Set of matches {(xq, X{"), (X3, X5°), (X3, X3”), (X4, X4')}
— Parametric model: f(x; t) = x + t

v
‘_
g

-

— Parameters p ==t, location of origin of Ain B

* Question for class:
— What is your best guess for model p* ??

2D translation estimation

B zf-"‘
e How?
— One correspondence x1 = [600, 150], x1" =[50, 50]

— Parametric model: x’ =f(x; t) = x + t

2D translation estimation
[-550, -100]

— One correspondence x1 = [600, 150], x1" =[50, 50]

— Parametric model: x’ =f(x; t) = x + t
=>t=x"-Xx

=>1 =[50-600, 40-150] = [-550, -100]

2D translation via least-squares

— A set of matches {(x;, x')}

— Parametric model: f(x; t) = x + t
— Minimize sum of squared residuals:

Ers = Z lrill* = Z 1 f(zi; p) — zi]|*.

How to solve?

Jacobian
In many cases, parametric model is linear/

flz;p) =z + J(z)p

Ar=z'—z=J(x)p

Eps =Y |J(@p+z—ai|* =Y |J(@:)p — Az
Differentiate and set to O:

QZJT x;) (J(x;))p— Az;) =0

Normal eguations — [Z JV (x)J] Z J1 (x;) Ax;

/—Ap =0
A~ b

. * =
Hessian p

Linear models menagerie

Transform Matrix Parameters p Jacobian J
1 0 t 10
translation 0 1 ¢, (tzsty) 0 1
co —Sg ty i 1 0 —spxr— coy
Euclidean S Co Uy (L by, 0) 0 1 cpxr— spy
1 1% 0l —b tm I 1 0 o —qy
similarity b 14+a t, (tz,ty,a,b) 01 vy =
1+ ano ani tm i 1 0 = y 0 O
affine ailo 1+ ail ty (tsca tya apo, A1, @10, all) O 1 0 0 =z Y

e All the simple 2D models are linear!

* Exception: perspective transform

2D translation via least-squares

r 14

3‘ gl
4

o
_— -
- - rwe of ~
-~ M I,
.".x’ - . A oy .
* - L‘ 4 ~A Y ‘-A_ .
: 4 e r‘\‘ : TR AN
. -
7 ;")- ~_ -
- “w) £ ., 5
:.“ e

gﬁ"m £

For translation: J = I and normal equations are particularly simple:

{Z 1T1] p= Z Ax;

1

In other words: just average the “flow vectors” Az =2’ — x

2 i
 ~

Oops | lied ! Euclidean is not linear!

Transform Matrix Parameters p Jacobian J
[
translation (tz) ty) 0
[
Euclidean (tzyty, 0) 0
B
similarity (tz, 1y, a,b) 0 1 v =
1+ ano ani tm 1 0 = y 0 O
affine ailo 1+ ail ty (tfm tya apo, ap1, @10, all) 1 0 0 =z Y

 Euclidean Jacobians are a function of 9!

Nonlinear Least Squares

2
Enps = Z If (zi;p) — =i

{2

Linearize around a current guess p:

f(z;p+ Ap) = f(x;p) + J(x;p)Ap
r=x — f(z;p) = J(z;p)Ap
Enis =Y | f(@:p) + J(@:p)Ap — 2" =Y |17 (z:p)Ap — ri|?

1

Differentiate and set to 0O:

22 T (@i;p) (J(zi3p)Ap — 1) = 0

[Z I (z5p)J (245 p)

AAp =b
Apx = A~ 1D

Ap =Y J"(@i;p)r:

Projective/H e T
transformation A i ﬁ
e Jacobians a bit harder :
e Parameterization:
1 4+ hgo ho1 ho2
h1o 14+ hi1 Ao
hQQ h21 I (h007 h017 % &8 13 h21)

* X'=1f(x,p);

P (14 hoo)x + ho1y + ho2 atid, 4 = hiox + (1 + h11)y + hio

hoox + ho1y + 1 hoox + ho1y + 1

e And Jacobian:
of 1|z vy 1 0 0 0 —2'x —2'y
J:—:—
op D| 0 0 0 = vy 1 —yz —yy

D = h20$—|—h21y+ 1

o (1 + hoo)x + ho1y + ho2

Projective
transformation

Closed Form H I [

e Taking x’=f(x,p):

h 14+ h h
anidl, 3 — 10 + (14 hi1)y + 12

hoox + ho1y + 1

* Mult both sidesby D = hyyx + hory + 1

:/I\j/

—x_:z:leOO—:?:’a:—:?:'y-
-y | |0 00z y 1 =gz —gy

* 4 matches => system of 8 linear equations

hoox + ho1y + 1

RANSAC

Motivation

* Estimating motion models
* Typically: points in two images
* Candidates:

— Translation

— Homography

— Fundamental matrix

Mosaicking: Homography

www.cs.cmu.edu/~dellaert/mosaicking

Color photography avant-la-lettre

Prokudin-Gorskii Images

Color photographs from the Russian Empire taken a century ago (1909-1915).

Sergei Mikhailovich Prokudin-Gorskii was a color photographer before his time, who undertook a photographic survey of the Russian Empire
for Tsar Nicholas II. He was able to capture color by taking three pictures of each scene, each with a different red, green or blue color filter.
Walter Frankhauser, a photographer contracted by the Library of Congress, manually registered and cleaned up some 120 of the original high-
resolution scans, with breathtakingly beautiful results. The results of his effort can be seen at the online-exhibit The Empire That Was Russia.

501-1000

Using computer-vision technology to automate the registration process, one can now for the first time view almost the entire collection of the
Prokudin-Gorskii photographs in color. The color images on these pages were obtained by automatically registering these three pictures to obtain
a color image of each scene. The computer program to do this was written in MATLAB by Frank Dellaert using computer-vision technology
commonly used in 'mosaicking'. By clicking the links on this page you can view thumbnails of the almost 2000 images purchased by the Library
of Congress, and each thumbnail is linked to a larger version of the corresponding color image.

https://www.cs.cmu.edu/~dellaert/aligned/

https://www.cs.cmu.edu/~dellaert/aligned/

Two-view geometry (next lecture

P

] .‘0 Ve

4..’.. "

PRSI Ry -
e LY. 2

Omnidirectional example

Images by Branislav Micusik, Tomas Pajdla,
cmp.felk.cvut.cz/ demos/Fishepip/

http://cmp.felk.cvut.cz/demos/Fishepip/

Simpler Example

* Fitting a straight line

Discard QOutliers

RANSAC with Boil-out Test
R-RANSAC with SPRT Feng and Hung’ MAPSAC

RLRANSAC vith Tuy Test CLITTACTINTD)

P ive RANSAC uMLESAC
rogressive L

i | Adaptive Evaluation |
[Partial Evaluation luation
’ RANSAC

pbM-estimataor
PROSAC LO-RANSAC

NAPSAC gasac
MLESAC MAPSAC

MSAC

Guided MLESAC

* No point with d>t
* RANSAC:

— RANdom SAmple Consensus
— Fischler & Bolles 1981
— Copes with a large proportion of outliers

Main Idea

Select 2 points at random
Fit a line
“Support” = number of inliers

Line with most inliers wins

Why will this work ?

Best Line has most support

 More support -> better fit

RANSAC

* Objective:
— Robust fit of a model to data D
e Algorithm
— Randomly select s points
— Instantiate a model
— Get consensus set D,
— If | D;|>T, terminate and return model
— Repeat for N trials, return model with max | D |

In General

" v
g
+ 2

¢ " -) . L
-t
: -
.
4
€
)
. e -
5 .
A
. & A
|
5 - > » :
AT
- 2
- 5
- »
- -
. . ~

M .
A -
" > \
& g eds - rwe
i3 A y -~ M 1
‘-

” 0 a == ;
o~ 7N : - > ~
3 2) .
5, 3 ﬂl" m: - .

* Fit a more general model

 Sample = minimal subset
— Translation ?
— Homography ?
— Euclidean transorm ?

Example

% acdi el | :
A TR M g
" e) ! : -
252')’ 'vﬂ' oy -
* Euclidean: needs 2
correspondences (2*2>=3)

e Here correct hypothesis has
support of 4 (out of 5)

* Including red into minimal
sample (of 2) would likely yield
low support

How many samples ?

 We want: at least one sample with all inliers
 Can’t guarantee: probability P
e E.g. P=0.99

Calculate N

* If £ = outlier probability

e proportion of inliersp=1-¢

* P(sample with all inliers) = p®

* P(sample with an outlier) = 1-p°
 P(N samples an outlier) = (1-ps)N

« We want P(N samples an outlier) < 1-P
e (1-ps)N<1-P

N >log(1-P)/log(1-p°)

Example

 P=0.99

— £=5%
— £=50%

— £=5%
— £=50%

— £=5%
— £=50%

=> N:2
=>N=17

=> N=3
=> N=72

=> N:S
=>N=1177

Remarks

* N =f(g), not the number of points

* N increases steeply with s

Distance Threshold

Requires noise distribution
Gaussian noise with o

Chi-squared distribution with DOF m

— 95% cumulative:

— Line, F: m=1, t2=3.84 ¢~

— Translation, homography: m=2, t?=5.99 ¢?
l.e. ->95% prob that d<tis inlier

Threshold T

* Terminate if |D;|>T
* Rule of thumb: T = #inliers
e So, T=(1-&)n=pn

Adaptive N

e When € is unknown ?
Start with € = 50%, N=inf
* Repeat:
— Sample s, fit model
— update € as |outliers|/n
— set N=f(g, s, p)
* Terminate when N samples seen

Summary: RANSAC

* Objective:
— Robust fit of a model to data D
e Algorithm
— Randomly select s points
— Instantiate a model
— Get consensus set D,
— If | D;|>T, terminate and return model
— Repeat for N trials, return model with max | D |

Pose Estimation in VR

https://youtu.be/nri3JE-NHMw

https://youtu.be/nrj3JE-NHMw

Review: 2D Alignment

" o
" ’ «t
i -4 - - b v ‘
R Lk e Il L
i3 : ‘%
s ‘ - X
~a

-\
T

.
_ ﬂ“ -
) .
’{ﬁlJ’ . B
) - ...

* Input:
— A set of matches {(x;, x;')}
— A parametric model f(x; p)
* Qutput:
— Best model p*
* How?

Now: 3D-2D
Alignment

* Input:
— A set of 3D->2D matches {(X, x)}
— A parametric model f(X; p)

* Qutput:
— Best model p*

* How?

Pose
Estimation

* |nput:
— A set of 2D measurements x; of known 3D points X
— Parametric model is camera matrix P, i.e., x = f(X; P)
* Qutput:
— Best camera matrix P

e How?

Review: Projective Camera Matrix

* Chapter 2 in book
* Homogeneous coord.
* 3D TO 2D projection:

x = K[R|{]X = PX

where P = 3x4 camera matrix - _

and K the 3x3 calibration k=|o C‘y

Camera Extrinsics: a Pose in 3D

* What is the geometric meaning of Rand t ??

* Intuitive: camera is at a position t.
Indices say: camera in world coordinate frame

Camera Extrinsics: a Pose in 3D

* What is the geometric meaning of Rand t ??

* Rotation is given by 3x3 matrix ,,R. whose
columns are the camera axes X, Vo wZc

wC/

WyC v

Camera Extrinsics: a Pose in 3D

* What is the geometric meaning of Rand t ??

* Transforming point X. from world to camera
coordinates: , X, — t.= R X

—w'tcc/

Camera Extrinsics: a Pose in 3D

* Expressed in homogeneous coordinates:
° cXi = chT (in - wtc) = vyRcT [l | - wtc] in
= .chT | 'chT wtc] in

:ch | ctw] in

Camera Extrinsics: a Pose in 3D

* Conclusion: when people write X, = [R]|t] , X
they are talking about (unintuitive) [.R,, | .t,,]

* We like use (intuitive) X, = ,R.[I] - ,t.] WX

Revision: Projective Camera Matrix

* Homogeneous coord.
* 3D TO 2D projection:

Camera-centric: x = K[R | .t,| X =PX
World-centric: x=K R.'[T]- t.]X=PX
P =same 3x4 camera matrix [¢ o .

and K the 3x3 calibration K= | 0 f, ¢,
0O 0 1

Looking at the (opagque) camera matrix

Can you interpret the columns of P with entities in the scene?
P - [P1 » = D4

Answer:

R1 == the image of [1 0 0 O]
P2 ==the.jmage of [0 1 0 O]
3 == the image~af [0 0 1 0]
he image of [06-0.1]

What are those-?
[0001]is easy...

Answer:
[000 1] is the origin, so P4 is the i e
of the origin.

[0100]is a point at infinity in the X-
direction, so it is the vanishing point of 2
lines parallel with the X direction!

Vanishing points, revisited

3 VANISHING POIR

= 3 VANISHING POINTS -
LOOKING UP 3

a LOOKING DOWN

Columns of P !
P=[P" P> P* P

P4 is arbitrary: wherever you defined the world origin.

https://www.artinstructionblog.com/perspective-
drawing-tutorial-for-artists-part-2

https://www.artinstructionblog.com/perspective-drawing-tutorial-for-artists-part-2

Back to Pose Estimation!

e Simple algorithm: just measure the
coordinates of the origin and the three
vanishing points?

* Does not work ®:
— Columns are only measured up to a scale.
— 4 points * 2DOF = only 8 DOF! Missing 11-8=3
— 3 missing numbers are exactly those scales.

Least Squares Pose Estimation...

* |nput:
— A sset of 2D measurements x; of known 3D points X,
— Parametric model is camera matrix P, i.e., x = f(X; P)
* Qutput:
— Best camera matrix P

Pose estimation = “Resectioning”

u S-u
=X P =PX = U] 2iE9
INS
N
arg min Z IPX?, — x*||2.
P =1

* Opposite of triangulation.

= |P21 P22 P23 P24

[1)11 P12 P13 Pi4
P31 P32 P33 P34

|

Pose estimation

N

arg min Z ||I?’X:l — x*||2.
P =1

* In project 4, you willuse scipy.optimize.least squares
to do exactly that. Working knowledge of 3D poses will be required.

 Note before we compute the 2D reprojection error we need to
convert back PX to non-homogeneous coordinates:

PooX; + po1Yi + po2Z; + pos3
p20Xi + p21Yi + p2oZ; + pos3
p10X; + p11Ys + p12Z; + p13
P20X; + P21Y; + p22Z; + pa3

I, —

Yi —

https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.least squares.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

