

2. Image Formation

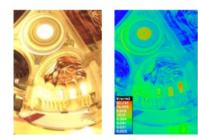
5. Segmentation

9. Stitching

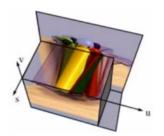
12. 3D Shape

3. Image Processing

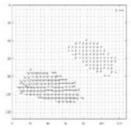
6-7. Structure from Motion



10. Computational Photography



13. Image-based Rendering



8. Motion

11. Stereo

14. Recognition

4.1	Points	Points and patches				
	4.1.1	Feature detectors				
	4.1.2	Feature descriptors				
	4.1.3	Feature matching				
	4.1.4	Feature tracking				
	4.1.5	Application: Performance-driven animation				
4.2	Edges					
	4.2.1	Edge detection				
	4.2.2	Edge linking				
	4.2.3	Application: Edge editing and enhancement				
4.3	Lines					
	4.3.1	Successive approximation				
	4.3.2	Hough transforms				
	4.3.3	Vanishing points				
	4.3.4	Application: Rectangle detection				

4.1	Points	and patches
	4.1.1	Feature detectors
	4.1.2	Feature descriptors
	4.1.3	Feature matching
	4.1.4	Feature tracking
	4.1.5	Application: Performance-driven animation
4.2	Edges	
	4.2.1	Edge detection
	4.2.2	Edge linking
	4.2.3	Application: Edge editing and enhancement
4.3	Lines	
	4.3.1	Successive approximation
	4.3.2	Hough transforms
	4.3.3	Vanishing points
	4.3.4	Application: Rectangle detection

Descriptors

Local features: main components

1) Detection: Identify the interest points

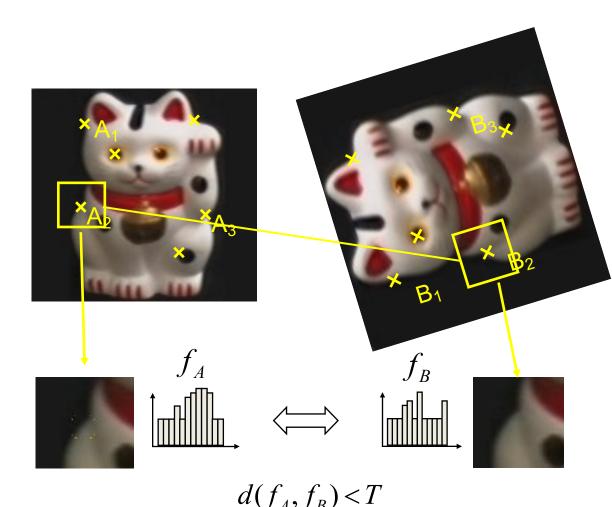
2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

$$\mathbf{x}_{1} = \begin{bmatrix} x_{1}^{(1)}, \dots, x_{d}^{(1)} \end{bmatrix}$$

$$\mathbf{x}_{2} = \begin{bmatrix} x_{1}^{(2)}, \dots, x_{d}^{(2)} \end{bmatrix}$$

Overview of Keypoint Matching



1. Find a set of distinctive keypoints

- 2. Define a region around each keypoint
- 3. Compute a local descriptor from the normalized region

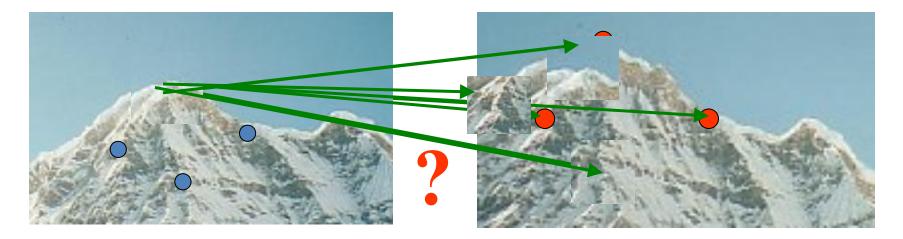
4. Match local descriptors

Goals for interest points

Detect points that are *repeatable* and *distinctive*

Goal for descriptors: distinctiveness

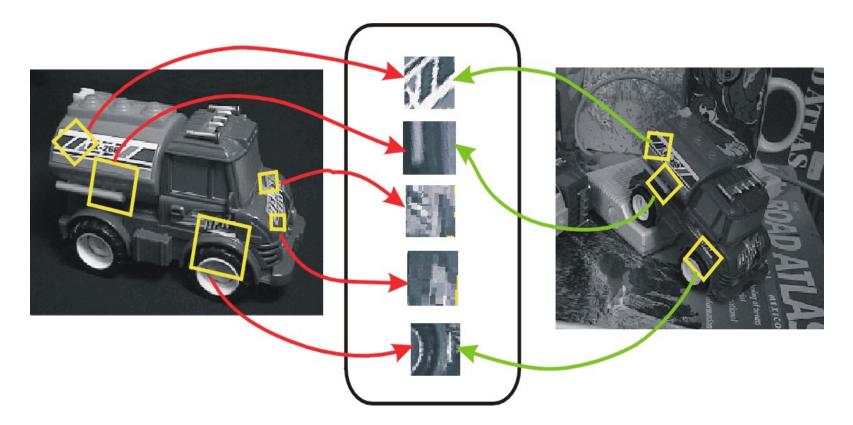
• We want to be able to reliably determine which point goes with which.



 Must provide some invariance to geometric and photometric differences between the two views.

Invariant Local Features

•Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters



Feature Descriptors

Image representations

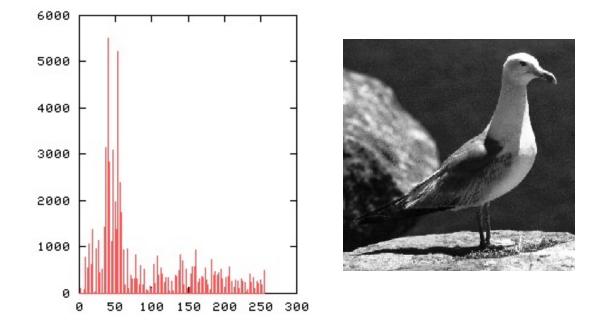
Templates

- Intensity, gradients, etc.

• Histograms

- Color, texture, SIFT descriptors, etc.

Image Representations: Histograms



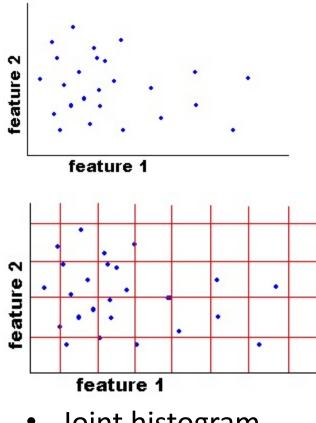
Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

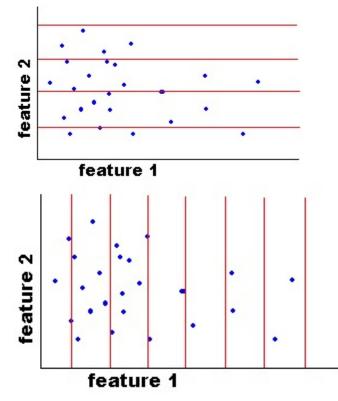
Images from Dave Kauchak

Image Representations: Histograms

Histogram: Probability or count of data in each bin



- Joint histogram
 - Requires lots of data
 - Loss of resolution to avoid empty bins



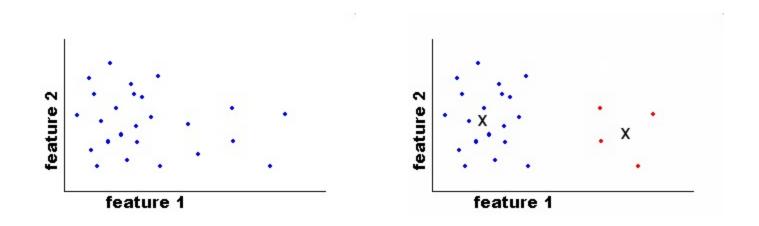
Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Images from Dave Kauchak

Image Representations: Histograms

Clustering

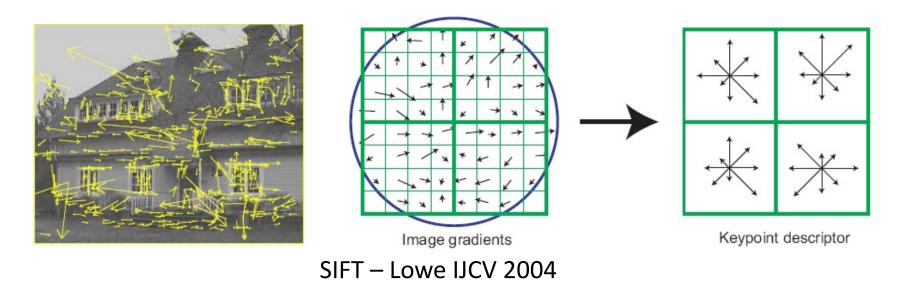


Use the same cluster centers for all images

Images from Dave Kauchak

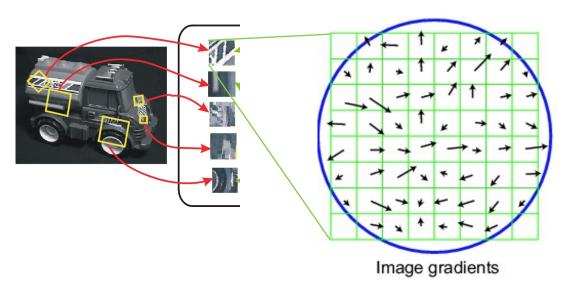
What kind of things do we compute histograms of?

• Histograms of oriented gradients



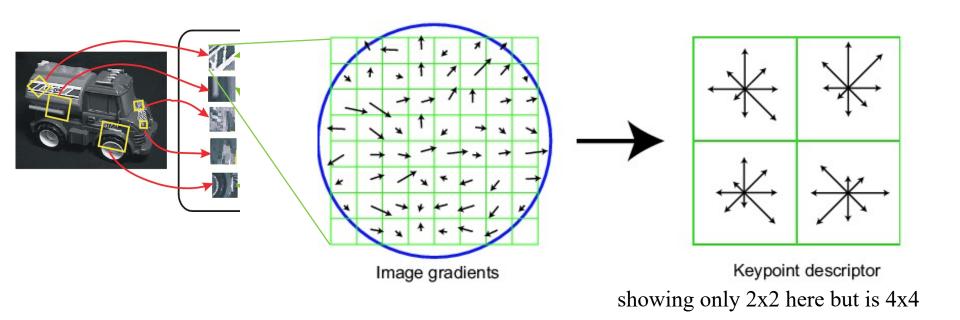
SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)



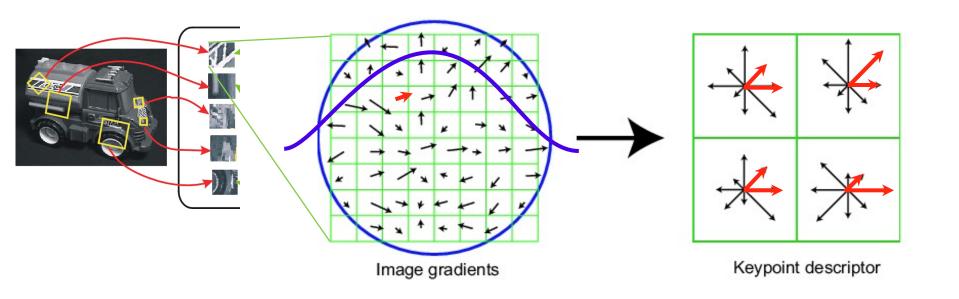
SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.



Ensure smoothness

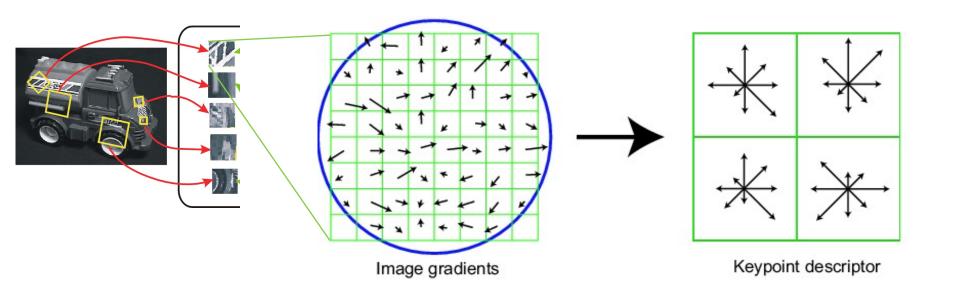
- Gaussian weight
- Interpolation
 - a given gradient contributes to 8 bins:
 - 4 in space times 2 in orientation



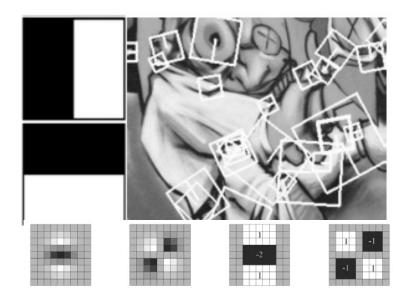
Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2

– renormalize



Local Descriptors: SURF



Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images ⇒ 6 times faster than SIFT Equivalent quality for object identification

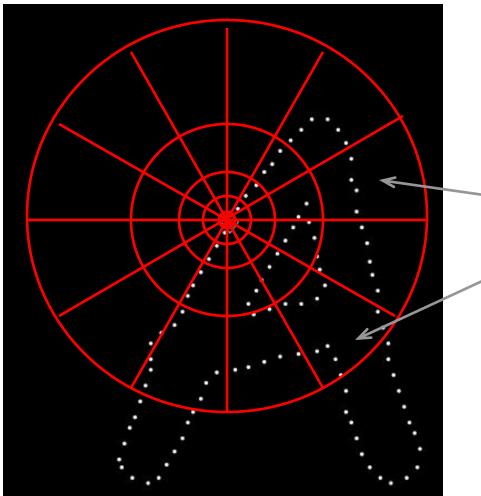
GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

Local Descriptors: Shape Context

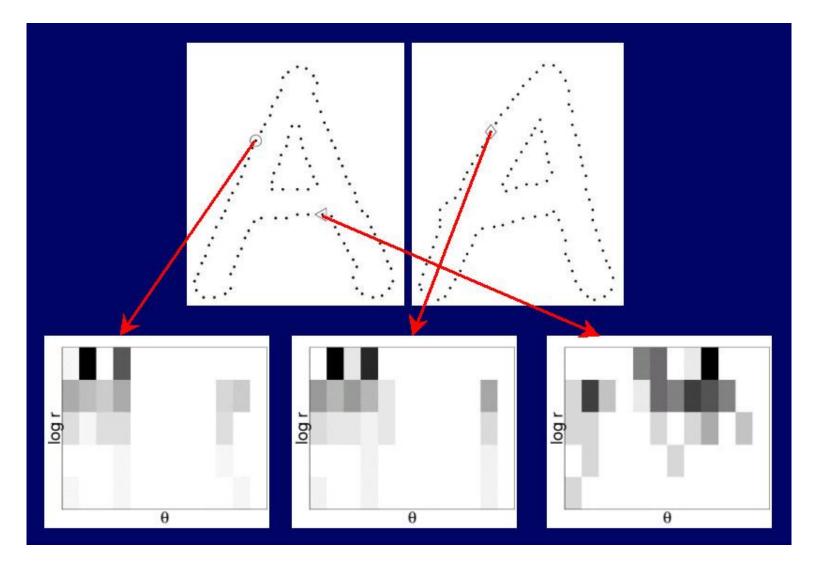


Count the number of points inside each bin, e.g.:

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001

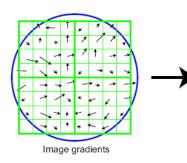
Shape Context Descriptor

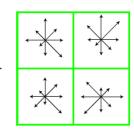


Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT





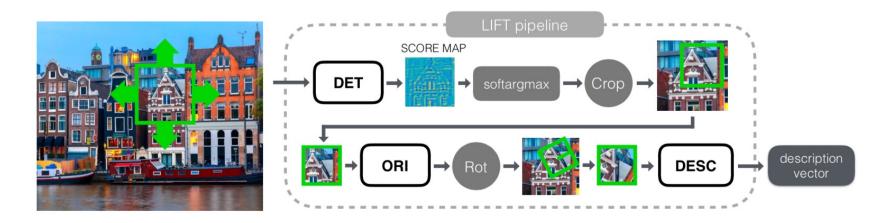
Keypoint descriptor

Deep Descriptors

LIFT: Learned Invariant Feature Transform ECCV 2016

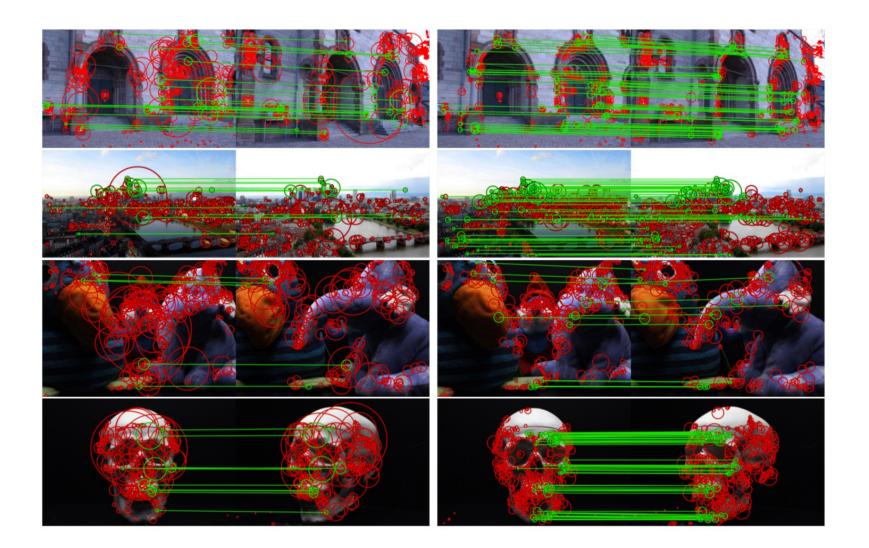
Kwang Moo Yi^{*,1}, Eduard Trulls^{*,1}, Vincent Lepetit², Pascal Fua¹

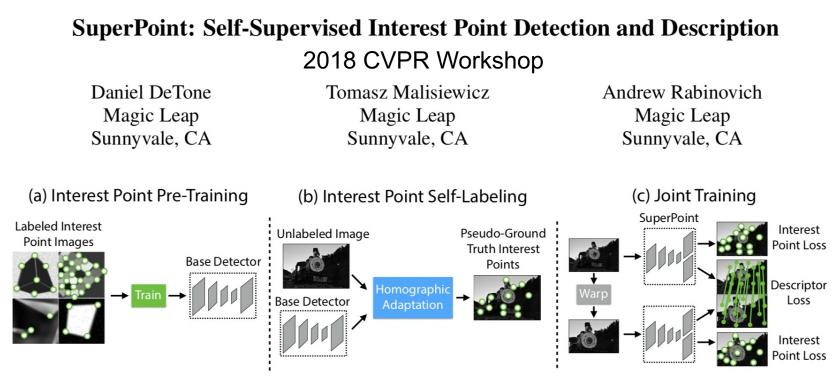
¹Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL) ²Institute for Computer Graphics and Vision, Graz University of Technology



- Three networks: detection, orientation, description
- detection+orientation -> STN -> descriptor
- Trained separately :-(

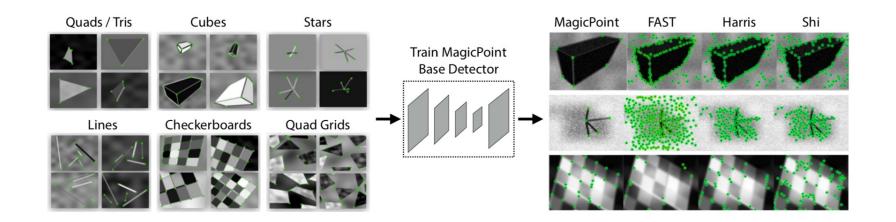
SIFT vs. LIFT



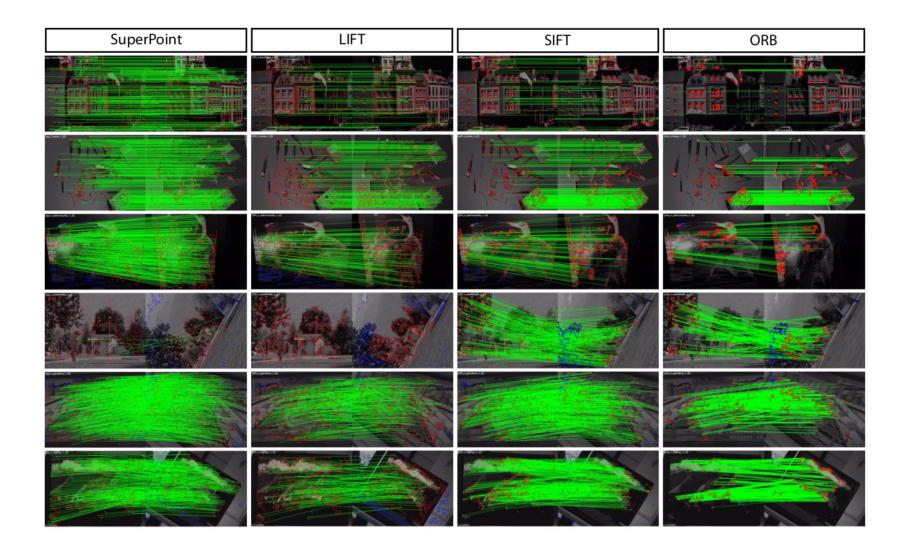


- Interest point = ill-defined -> self-supervised
- MagicPoint -> SuperPoint

MagicPoint



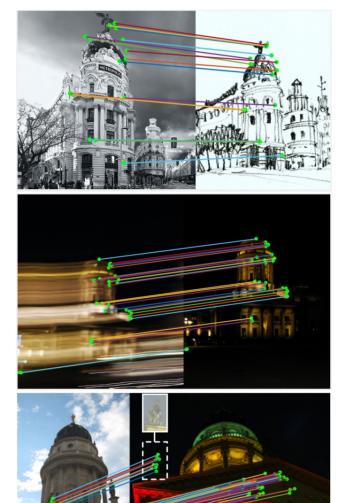
SuperPoint Results



D2-Net: A Trainable CNN for *Joint Description and Detection* of Local Features CVPR 2019

Mihai Dusmanu^{1,2,3} Ignacio Rocco^{1,2} Tomas Pajdla⁴ Marc Pollefeys^{3,5} Josef Sivic^{1,2,4} Akihiko Torii⁶ Torsten Sattler⁷

- Tensor viewed as descriptors and detector maps
- VGG16-based, loss encourages distinctiveness and repeatability
- Results beat the star of the art in day-night and indoor localization, but not in more traditional settings (Superpoint shines for HPatches, GeoDesc for SFM)



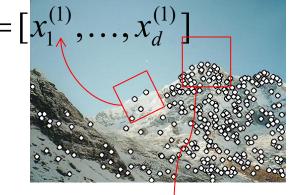
Matching

Local features: main components

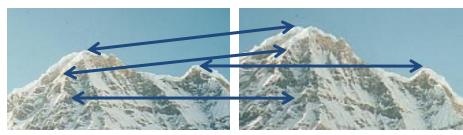
1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, x_d^{(1)} \\ x_d \end{bmatrix}$

3) Matching: Determine correspondence between descriptors in two views

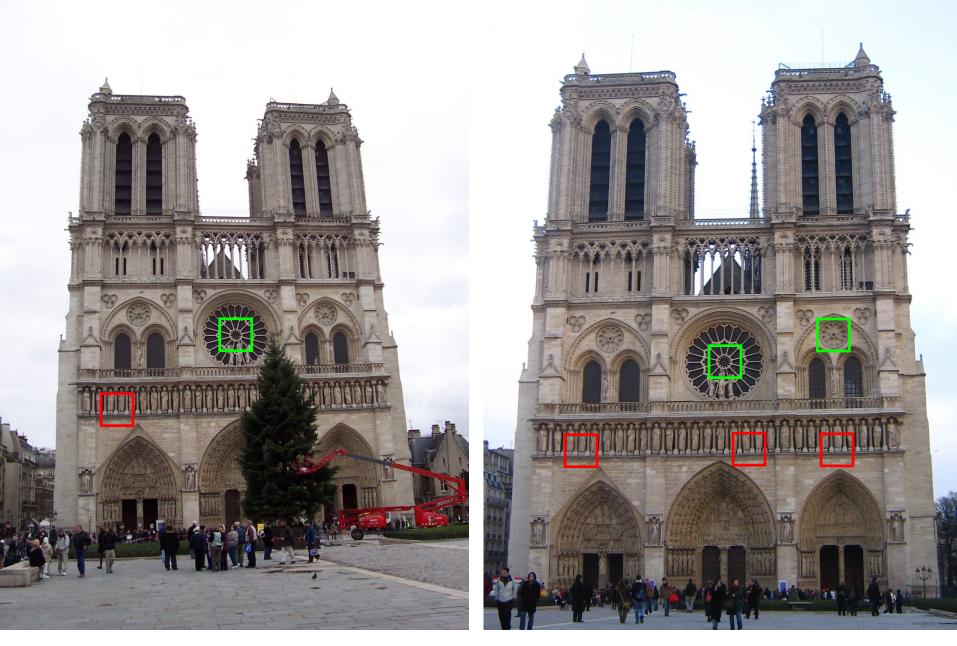


$$\mathbf{x}_{2}^{\Psi} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$



Matching

- Simplest approach: Pick the nearest neighbor. Threshold on absolute distance
- Problem: Lots of self similarity in many photos



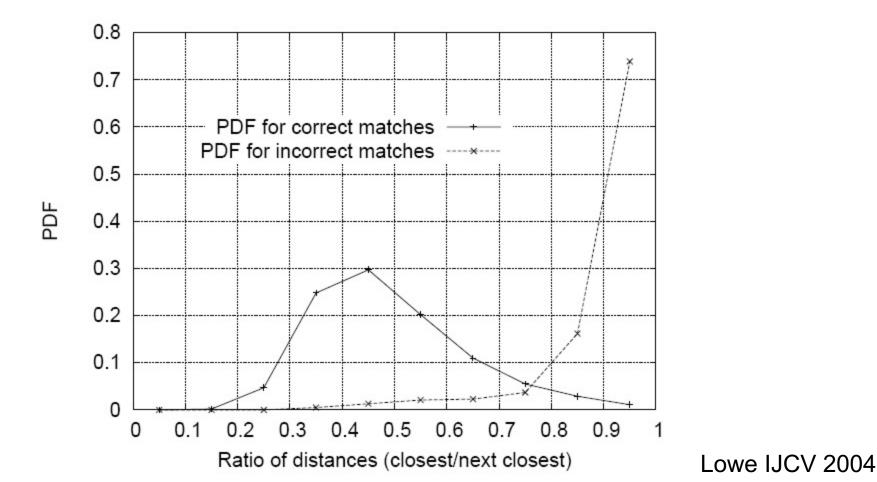
Distance: 0.34, 0.30, 0.40 Distance: 0.61 Distance: 1.22

Nearest Neighbor Distance Ratio

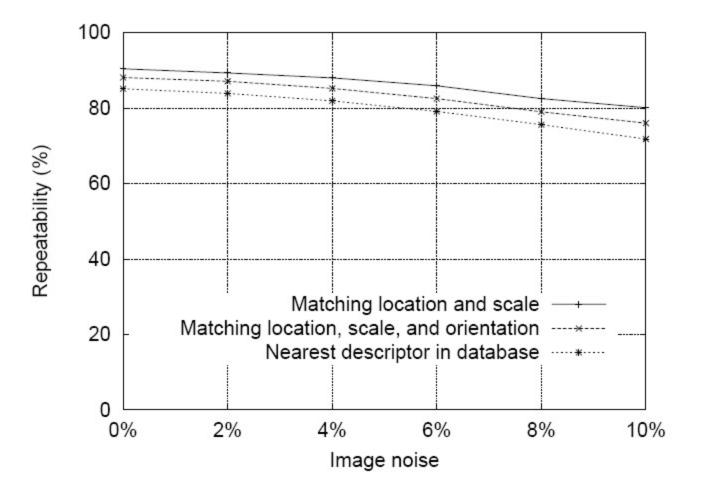
- $\frac{NN1}{NN2}$ where NN1 is the distance to the first nearest neighbor and NN2 is the distance to the second nearest neighbor.
- Sorting by this ratio puts matches in order of confidence.

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor



SIFT Repeatability



Lowe IJCV 2004

SIFT Repeatability

