






Correspondence across views

• Correspondence: matching points, patches, 
edges, or regions across images
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Example: estimating “fundamental matrix” 
that corresponds two views

Slide from Silvio Savarese



Example: structure from motion



Applications  
• Feature points are used for:

– Image alignment 
– 3D reconstruction
– Motion tracking
– Robot navigation
– Indexing and database retrieval
– Object recognition



Example: Panorama stitching
We have two images – how do we combine them?



Local features: main components
1) Detection: Identify the 

interest points

2) Description: Extract vector 
feature descriptor surrounding 
each interest point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Detectors



Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor surrounding 
each interest point.

3) Matching: Determine 
correspondence between 
descriptors in two views



Interest points defined
• Suppose you have to 

click on some point,  
go away and come 
back after I deform the 
image, and click on the 
same points again.  
– Which points would 

you choose?

original

deformed



Characteristics of good features

• Repeatability
– The same feature can be found in several images despite geometric and 

photometric transformations 

• Saliency
– Each feature is distinctive

• Compactness and efficiency
– Many fewer features than image pixels

• Locality
– A feature occupies a relatively small area of the image; robust to clutter and 

occlusion



Goal: interest operator repeatability
• We want to detect (at least some of) the 

same points in both images.

• Yet we have to be able to run the detection 
procedure independently per image.

No chance to find true matches!

Kristen Grauman



History

• Hans Moravec 1980

• Harris Corners 1988

• [Wolf & Platt 1993: FCN!]

• SIFT (Lowe) 2004

• FAST 2006 (learning!)

• SURF 2006

• ORB 2011



Corner Detection: Basic Idea

• We should easily recognize the point by 
looking through a small window

• Shifting a window in any direction should 
give a large change in intensity
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Corner Detection: Mathematics
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Change in appearance of window w(x,y) 
for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)



Corner Detection: Mathematics
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I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) 
for the shift [u,v]:



Corner Detection: Mathematics
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IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) 
for the shift [u,v]:



Corner Detection: Mathematics
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We want to find out how this function behaves for 
small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

E(u, v)



Corner Detection: Mathematics
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We want to find out how this function behaves for 
small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

But this is very slow to compute naively.
O(window_width2 * shift_range2 * image_width2)

O( 112 * 112 * 6002 ) = 5.2 billion of these 
14.6 thousand per pixel in your image



Corner Detection: Mathematics
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We want to find out how this function behaves for 
small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

Recall Taylor series expansion. A function f can be 
approximated around point a as



Corner Detection: Mathematics
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Local quadratic approximation of E(u,v) in the 
neighborhood of (0,0) is given by the second-order 
Taylor expansion:
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We want to find out how this function behaves for 
small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:



Corner Detection: Mathematics

Local quadratic approximation of E(u,v) in the 
neighborhood of (0,0) is given by the second-order 
Taylor expansion:
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E(u, v)Always 0
First 

derivative 
is 0



Corner Detection: Mathematics
The quadratic approximation simplifies to
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where M is a second moment matrix computed from image 
derivatives:
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).

Notation:



The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R

direction of the 
slowest change

direction of the 
fastest change
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Diagonalization of M:



Interpreting the eigenvalues

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;
E increases in all 
directions

l1 and l2 are small;
E is almost constant 
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image points using eigenvalues 
of M:



Corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small
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α: constant (0.04 to 0.06)



Harris corner detector

1) Compute M matrix for each image window to 
get their cornerness scores.

2) Find points whose surrounding window gave 
large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform 
non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector [Harris88]

• Second moment matrix
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1. Image 
derivatives

2. Square of 
derivatives

3. Gaussian 
filter g(sI)
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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Project 3: HarrisNet
• Harris with pytorch!



Harris Detector: Steps



Harris Detector: Steps
Compute corner response R



Harris Detector: Steps
Find points with large corner response: R>threshold



Harris Detector: Steps
Take only the points of local maxima of R



Harris Detector: Steps



Deep Detectors



Many “Classical” Detectors Available

K. Grauman, B. Leibe

Hessian & Harris [Beaudet ‘78], [Harris ‘88]
Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace       [Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
EBR and IBR [Tuytelaars & Van Gool ‘04]
MSER [Matas ‘02]
Salient Regions [Kadir & Brady ‘01] 
Others…



• Train on images from webcams: fixed view, 
different times

• Learn CNN-like regressor
• Loss = repeatability

CVPR 2015


