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8. Motion

5. Segmentation
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Correspondence across views

* Correspondence: matching points, patches,
edges, or regions across images
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Example: structure from motion




Applications

* Feature points are used for:
— Image alignment
— 3D reconstruction
— Motion tracking
— Robot navigation

— Indexing and database retrieval
— Object recognition




xample: Panorama stitching

We have two images — how do we combine them?




Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector

feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Detectors



Local features: main components

Detection: Identify the
interest points




Interest points defined

e Suppose you have to
click on some point,
go away and come
back after | deform the
image, and click on the
same points again.

— Which points would
you choose?

original

deformed



Characteristics of good features

e Repeatability
— The same feature can be found in several images despite geometric and
photometric transformations

e Saliency
— Each feature is distinctive

e Compactness and efficiency
— Many fewer features than image pixels

e Locality

— A feature occupies a relatively small area of the image; robust to clutter and
occlusion



Goal: interest operator repeatability

* We want to detect (at least some of) the
same points in both images.

* Yet we have to be able to run the detection
procedure independently per image.

Kristen Grauman



History

* Hans Moravec 1980

* Harris Corners 1988

* [Wolf & Platt 1993: FCN!]
* SIFT (Lowe) 2004

* FAST 2006 (learning!)

* SURF 2006

* ORB 2011




Corner Detection: Basic Idea

e We should easily recognize the point by
looking through a small window

e Shifting a window in any direction should
give a large change in intensity

V\

'

“flat” region: “‘edge”: ‘corner’;
no change in no change significant
all directions along the edge change in all

direction directions

Source: A. Efros



Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u, v]:




Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u, v]:




Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,V]:

2
E(u,v) =) wx, ) [I(x+u,y+v) —1\(x, )]
Window Shifted

Window function W(X,y) = JP—

(Intensity)

1 in window, O outside Gaussian

Source: R. Szeliski



Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u, v]:

We want to find out how this function behaves for

small shifts
E(u, v)




Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,V]:

E(u,v)= Zw(x,y)[[(x+u,y+v)—](x,y)

We want to find out how this function behaves for
small shifts

But this is very slow to compute naively.
O(window_width? * shift_range? * image_width?)

O( 112* 112 * 6002 ) = 5.2 billion of these
14.6 thousand per pixel in your image



Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,V]:

E(u,v)= Zw(x,y) [I(x+u,y+v)—](x,y)]2

We want to find out how this function behaves for
small shifts

Recall Taylor series expansion. A function f can be
approximated around point a as

f‘H (K a) - - f‘H! (k a )
o Ayt T

f'(a)

T (z—a)*+---.

fla) + (z —a) +



Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,V]:

E(u,v)= Z:w(x,y)[l(xﬂ/t,y+v)—](x,y)]2

We want to find out how this function behaves for
small shifts

Local quadratic approximation of E(u,v) in the

neighborhood of (0,0) is given by the second-order
Taylor expansion:

E (0,0)] 1 E (0,00 E _(0,0)| u
E(u,v)= E0,0)+[u V] E (0.0) +5[u V] E (00) E (00)]v



Corner Detection: Mathematics

Local quadratic approximation of E(u,v) in the
neighborhood of (0,0) is given by the second-order
Taylor expansion:

E(u,v)= E(0,0)+[u v]{

L]
Always 0 gst Eu, v)

derivative
s O

EL,(o,O)} 1 V]{Ewm,m EL,V(o,oq{u}

+—[u
E (0,0)| 2 E (0,00 E (00) v




Corner Detection: Mathematics

The quadratic approximation simplifies to

where M is a second moment matrix computed from image
derivatives:

| Iy Yo Ikl - Iy B .
M= [ZIwa ZIyIz] _Z[]y ] [ Iy] = ) VI(VI)



Corners as distinctive interest points

11, 11,

M= wx,
2 W) 11, 11,

2 X 2 matrix of image derivatives (averaged in
neighborhood of a point).

o

K Y

Notation:




Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a
quadratic form. Let’s try to understand its shape.

-
Eu,v) = [u vl M
.
M=y =T
= > w(x,
R TR G




Interpreting the second moment matrix

Consider a horizontal “slice” of E(u, v): [u v] M {u} = const

.
This is the equation of an ellipse.



Interpreting the second moment matrix

u

Consider a horizontal “slice” of E(u, v): [u v] M { }:const

.
This is the equation of an ellipse.

0
Diagonalization of M: M=R" A R
0 4,

The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R

direction of the
fastest change

direction of the
slowest change



Interpreting the eigenvalues

Classification of image points using eigenvalues

of M:
A,

A and A, are small;
E is almost constant :>

in all directions




Corner response function

R=det(M)-atrace(M)’ = A4 —a(l, +4,)°

a: constant (0.04 to 0.06)




Harris corner detector

1) Compute M matrix for each image window to
get their cornerness scores.

2) Find points whose surrounding window gave
large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform
non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Detector [harrisss]

e Second moment matrix

1. Image
derivatives

I3(0,) %(%)}
(optionally, blur first)

IU(GI9GD):g(O-I)*|:II (o)) ]2(0_ )

2. Square of
det M = A A, derivatives
traceM =4 + 4
Al 3. Gaussian
filter g(o))

4. Cornerness function — both eigenvalues are strong

har =det[u(o, 0 )] - altrace(u(o, 9O-D))2] =
g()eI})~[g( 1) —alg())+g()T

5. Non-maxima suppression




Project 3: HarrisNet
* Harris with pytorch!

HarrisNet

H H

H

X,
3x3x1 7x7x1 e.g. over ;
filters filters 7x7
(Sobel) (Gauss) window
Compute MaxPool _Locatiop of
Det/Trace interesting
points
1
1 2 3 3 1
Grayscale Creatingimage  creating Ix*2,  Creating S_xx,  Each pixel here is ST TR
Image 1xHxW  gradient Ixly  |ya2 and Ix*ly S_yyand S_xyin representing Harris ~ SUPPression
the second corner score

moment matrix M R = det(M) - alpha(trace(M))*2

S_xx S_xy
S xy S_yy



Harris Detector: Steps




Harris Detector: Steps

Compute corner response R
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Harris Detector: Steps




Harris Detector: Steps

Take only the points of local maxima of R




Harris Detector: Steps




Deep Detectors



III

Many “Classical” Detectors Available

Hessian & Harris Beaudet ‘78], [Harris ‘88]
Laplacian, DoG Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace ‘Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine ‘Mikolajczyk & Schmid ‘04]
EBR and IBR Tuytelaars & Van Gool ‘04]
MSER ‘Matas ‘02]

Salient Regions Kadir & Brady ‘01]

Others...



TILDE: A Temporally Invariant Learned DEtector
CVPR 2015

Yannick Verdie'* ~ Kwang Moo Yi''*  Pascal Fua' Vincent Lepetit?

!Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL)
*Institute for Computer Graphics and Vision, Graz University of Technology

Time change

H

(a) Stack of training images (b) Desired response on (c) Regressor response for a

(d) Keypoints detected in the
positive samples new image new image

* Train on images from webcams: fixed view,
different times

e Learn CNN-like regressor
* Loss = repeatability



