Deep Object Recognition
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Dataset: ImageNet 2012

T3 T W T efE WS
Yim T2 DEe M7 0 4
S#7 Pl ] A A S

mammal — placental —— camivore — canine —-worklng dog

® 5 (a) Eskimo dog, husky (breed of heavy-coated Arctic sled dog)
o diract iypernym | inkerited Rypernym | sister term
5 {n) working dog (anv of several braeds of usually large powerfil dogs bred to work as draft arsmals and puard and mide dogs)
» 5 in) dog, domestic dog, Cans familiaris (a member of the genns Canis (probably descendad from the common welf) that has been demesticated by man since prebistornic times; ocours in many
breeds) "the dog Sarked all might”
& 5 (n) canme, canid (any of various fissiped mamsals with neaeetractle claves and tvpically long nmzzles)
® S (n) cammivore (3 terrestrial or aquatic flesh-eating mamemal) "fervestrial carnivores have four or five clawed digils on each Kmb™
* 5 () placental, placertal mammal, entherian, eutherian mammal (mammals having 2 placenta; all mammals except monotremes and marsupials)
* 5 (n) mammal mammakian (ary wanm-blooded vertebrate having the skin more or less covered with hair; young are bosn alive except for the small subclass of
menotremes and nounshed with milk}
® S (n) vertebrate, craniate {animals having a bony or catilaginous skeleton with a sepmented spinal cobuma and a larps brain anclosed i a skull or cranny)
LIS |’r|‘| dwrdﬂle (an} animal of I.he ph:.hm Chogdata havi:g a mlochmd or spinal commn}

. é () organism, __g(a]:mg ﬁmgthathns {or can develop) the abﬂn} mmmﬁmcmnmd:pmdmﬂy}
¢ 5 (n) bving thing, ananate thing (3 bving (or oace iving) entity)
® §: () whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the
whole?""s "the feam is a unir”
¢ 5 () object, physical object (a tangible and vishle entity, an entity that can cast a shadow) " was fill of rackets,
balls and other objects"
» 5 (1) physical entity (an ety that has physical existence)
® 5 (n) entity (that which is percenved or known or inferrad to have its own distinct existence (Ivng or
noaliving))

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009
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AlexNet

* CNN by Alex Krizhevsky, Ilya
Sutskever and Geoffrey Hinton

* Competed in the ImageNet Large
Scale Visual Recognition Challenge
on September 30, 2012. Achieved
a top-5 error of 15.3%, beating
SOTA by 10%.

* Seen by many as the start of the
DL revolution in CV.

* That claim is contested by Jlrgen
Schmidhuber, whose postdoc Dan
Ciresan published a similar result
in [JCAI 2011 (but on easier
datasets).

* Both owe a debt to Fukushima,
who invented CNNs in 1980, and
Yann LeCun, who applied
backprop to CNNs in 89.

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilyal@cs.utoronto.ca hinton@cs.utoronto.ca
Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif
ferent classes, On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art, The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train
ing faster, we used non-saturating neurons and a very efficient GPU implemen
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved 1o be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,

compared 10 26.2% achieved by the second-best entry

1 Introduction

Current approaches 1o object recognition make essential use of machine learning methods. To im
prove their performance, we can collect larger datasets, learn more powerful models, and use bet
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance (4]
But objects in realistic settings exhibit considerable variability, o 1o learn 10 recognize them it is
necessary 1o use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col
lect labeled datasets with millions of images, The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet (6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob.
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have, Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con
trolled by varying their depth and breadth, and they also make strong and mostly correctassumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier 1o train, while their theoretically-best
performance is likely to be only slightly worse,
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Architecture for Classification

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

, —_ input
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012
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Optimization

SGD with momentum:
= Learning rate = 0.01

= Momentum = 0.9

Improving generalization by:
= Weight sharing (convolution)
s [nput distortions

= Dropout = 0.5

» Weight decay = 0.0005

97
Ranzaton




Results: ILSVRC 2012

TASK 1 - CLASSIFICATION TASK2 - DETECTION

CNN  SIFT+FV  SVM1  SVM2 NCM
CNN DPM-SVM1 DPM-SVM2

98
Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012 Ranzatol
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Beyond AlexNet



VERY DEEP CONVOLUTIONAL NETWORKS FOR
LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman 2015

These are the “VGG” networks.



VGG

ConvNet Configuration

Ix3 conv, 64

3x3 conv, 54, pool/

3x3 corwv, 123

3x3 conv, 128, pool/Z
33 Cofv, 256
33 corv, 256
v
33 conv, 2156
v
3x3 conv, 156, pool/Z
¥
33 conw, 512
33 Colw, 512
33 corw, 512
v
3x3 conv, 5TZ, pooliZ
v
3x3 corv, 512
v
33 conv, 512
v
3x3 corw, 512

A A-LRN B € i B) E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).

Network

A.A-LRN B

C D

Number of parameters

133

133

134 | 138

144




Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table|1) smallest image side top-1 val. error (%) | top-5 val. error (%)
train (.5) test ((Q)
B 256 224,256,288 289 9.6
256 224,256,288 207 9.7
C 384 352,384,416 27.8 9.2
1256; 512| | 256,384,512 26.3 8.2
256 224,256,288 26.6 8.6
D 384 352,384,416 26.5 8.6
256; 512] | 256,384,512 24.8 2
256 224,256,288 26.9 8.7
E 384 352,384,416 26.7 8.6
1256; 512] | 256,384,512 24.8 7.5




Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
2015

This is the “Inception” architecture or “GooglLeNet”

*The architecture blocks are called “Inception” modules
and the collection of them into a particular net is “GoogLeNet”
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Filter
concatenation

(a) Inception module, naive version

3x3 max pooling

N

3x3 convolutions

5x5 convolutions

1x1 convolutions

4

)

1x1 convolutions

1x1 convolutions

[}

3x3 max pooling

Previous layer

(b) Inception module with dimensionality reduction




1x1 Convolutions

ReLLU

>

CONV1x1
32

28 X 28 X 32

28 X 28 X 192

* Linearly reduce a set of n features to a set of
m features. Example: 192 -> 32

* |.e., matrix multiplication with m x n matrix, at
each location (32x192 in example: 32 “bases”)

* Typically followed by RelLU



type pazigsize/ Olslg):t depth | #1x1 ig;ﬁ £35S i(?;(ci 555 g:::; params | ops
convolution TXT7/2 112x112x64 1 24K 34M
max pool 33 12 56 x 56 x 64 0

convolution 85¢3i/1 56 x56x192 2 64 192 112K | 360M
max pool 3x3/2 28%28x192 0

inception (3a) 28 X 28 X256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x480 2 128 128 192 52 96 64 380K | 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3%3/2 TXTx832 0

inception (5a) TXTx832 2 256 160 320 32 128 128 | 1072K | 54M
inception (5b) TXxT7x1024 2 384 192 384 48 128 128 | 1388K | 71M
avg pool X/l 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0

GoogLeNet: Only 6.8 million parameters. AlexNet ~60 million, VGG up to 138 million
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Results

* |[LSVRC 2014:

Team Year | Place | Error Uses external
(top-5) data

SuperVision || 2012 | 1st 16.4% no
SuperVision || 2012 | 1st 15.8% Imagenet 22k

Clarifai 2013 | 1st 4 Gy no
Clarifai 2013 | 1st 11.2% Imagenet 22k
MSRA 2014 | 3rd .35 76 no
VGG 2014 | 2nd 7.32% no

GoogLeNet || 2014 | 1st 6.67% no ‘

Table 2: Classification performance.



Revolution of Depth

VGG, 19 layers : —— ’::M : GoogleNet, 22layers wu o
(ILSVRC 2014) v (ILSVRC 2014) -

[ 11x11 conv, 96, /4,pool/2__|

AleXNet’ 8 layers 5X5 CONV, 256, pool/Z ]
(IISVRC 201 2) [ 3X3 co!v, 384 |

\ 4
[ 3x3 conv, 728 |

z > ST
|
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Surely it would be ridiculous to go any deeper...

Introducing: ResNet

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers E
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015) =

[

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Revolution of Depth

152 layers |

\ 16.4

\ 11.7
22 layers 19 layers

' 6.7

= l I sl | Blaer

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Revolution of Depth

Engines of
visual recognition

34
shallow
& ]
HOG, DPM AlexNet
(RCNN)

==
P
=

101 layers
/A
/86
66
16 layers:
VGG ResNet
(RCNN) (Faster RCNN)*

PASCAL VOC 2007 Object Detection mAP (%)

*w/ other improvements & more data

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Deep Residual Learning

* F(x) is a residual mapping wirt. identity

X
weight ayer « If identitywere optimal,
easy toset weights as 0
F(x) ! relu identity
weight layer X « |f optimal mapping is closer to identity,
easier to find small fluctuations

H(x)=F (x)+x

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



CIFAR-10

experime nts
CIFAR-10 plain nets
56-layer
/ 44-layer
S 32-layer
B 20-layer
_Eigigf‘ solid: test

S 4 - . ~—  dashed: train

iter. (le4)

error (%)

CIFAR-10ResNets

iter. (1e4)

» Deep ResNets can be trained withoutdifficulties
 Deeper ResNets have lower training error, and also lower test error

20-layer
32-layer
44-layer
56-layer
110-layer

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



ResNets @ ILSVRC & COCO 2015
Competitions

* 1st places in all five maintracks
* ImageNet Classification: “Ultra-deep” 152-layer nets
* ImageNet Detection: 16% better than2nd
* ImageNet Localization: 27% better than2nd
» COCO Detection: 11% better than 2nd
« COCO Segmentation: 12% better than 2™
» 57K citations (in 6 years)

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Leamning for Image Recognition”. CVPR 2016.



Object Detection Architectures

Y

boat : 0.853 - person 0.993

Iage Clasiﬁcafion Object Detection
(What?) (what + where?)



Object Detection: Early Work

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013 o1
Szegedy et al. “DNN for object detection” NIPS 2013 Ranzatolk §




Object Detection: R-CNN

warped region

N (| [ :ﬁ%
NI — sl e CNN
input image region proposals 1 CNN for each region
~2,000 -> 4096 feature vector

R CNN pipeline

figure credit: R. Girshick et al.

aeroplane? no.

person? yes.

Q

tvmonitor? no.

classify regions

Proposals by “Selective search” algorithm (2013)

Two “heads’’:
. classifier
. BB regressor

Nice post: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-

object-detection-algorithms-36d53571365e



https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

Object Detection: R-CNN

* R-CNN
feature feature
feature
feature
CNN CNN
CNN CNN
pre-computed ~
Regions-of-Interest mp R T

End-to-End
training



Object Detection: FastR-CNN

* Fast R-CNN
pre-computed :
Regions-of-Interest mp M pooling

(Rols) End-to-End

training
shared conv CNN ,
layers /
A

P27 7 A d

s



Object Detection: FastR-CNN

* Fast R-CNN

Training time (Hours)
R-CNN
SPP-Net

Fast R-CNN 8.75

0 25 50 75

Girshick. Fast R-CNN. ICCV 2015

100

Test time (seconds)

B Including Region propos...

B Excluding Region Propo...

4.3
SPP-Net r2.3

g 23
Fast R-CNN 0.32

0 15

30

45

60



Object Detection: Faster R-CNN

features

* Introduces “Region &pooling

Proposal Networks” proposats
( R P N S) Region Proposal Net

 Solely based on CNN: ﬁeaturemap

use for classification
and regions " 4

A
LT 77

e End-to-End

* Each step is end-to-end o training




Region Proposal Nets in Faster R-CNN

2k scores 4k coordinates <= k anchor boxes

cls layer \ t reg layer

256-d

intermediate layer

\\

sliding window

conv feature map

* In paper: k=9 (3 scales, 3 aspect ratios)

* Sibling objectness (2k) and BB regression(4k) outputs



Object Detection

ImageNet
data
backbone \ classification \ detection
structure network network
pre-train features
+ AlexNet
* VGG-16
» GoogleNet
* ResNet-101
« .y independently
plug-in developed

features

detection
data

2
—)

fine-tune

R-CNN
FastR-CNN
FasterR-CNN
MultiBox
SSD

detectors



classifier
Faster R-CNN w Resnet "
Rol pooling

* Simply “Faster R-CNN +ResNet” proposals 1
L/
/E Q/

VGG-16 41.5 21.5
featuremap
ResNet-101 48.4 27.2
COCO detectionresults

ResNet-101 has 28% relativegain vs VGG-16




Faster R-CNN Efficiency

R-CNN Test-Time Speed
R-CNN

SPP-Net:::

Fast R-CNN. 2.3

Faster R-CNN| 0.2

0 15 30 45

* Expensive “Selective Search” is gone



Object Detection

* RPN learns proposals by extremely deep nets
 Uses only 300 proposals (no hand-designed proposals)

« Add components:
* |terative localization
» Context modeling
 Multi-scale testing

« All are based on CNN features; all are end-to-end

* All benefit more from deeper features - cumulative gains!
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ResNet’s object detection result on COCO

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.
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this video is aai lable online: https: / /youtu.be/WZmSMkK9VUA

Results on real video. Models trained on MS COCO (80 categories).
(frame-by-frame; no temporal processing)




More Visual Recognition Tasks

ResNet-based methods lead on these benchmarks (incompletetist):
 ImageNet classification, detection, localization

v v v VYV

[ ] MS COCO detect'ion, Segmentat‘ion [ DeepLabv2-CRF ] 79.7 926 60.4 916 63.4 763 95.0 38.41

CASIA_SegResNet_CRF_coco 7] 793 938 RGSNet-BS1 @

- hd Adelaide_VeryDeep_FCN_voc 7] 79.1 919 48.1 934 69.3 75.5 94.2 87.5
» PASCAL VOC detection, segmentatio
] n ) n ] n LRR_#X_COCU™
CASIA_IVA_OASeg [ 783 938 419 89.4 67.5 715 94.6 85.3
Oxford TVG_HO_CRF [?) 77.9 925 50.1 90.3 70.6 74.4 92.4 84.1

 Human pose estimation [Newell et al2016] PASCAL segmentation leaderboard
* Depth estimation [Laina et al 2016] e

v 7 7 7 7 7 7 °
Faster RCNN, ResNet (vOC+C0cO) 7] 83.8 921 88.4 B4/ 8 8 o
* Segment proposal [Pinhei 3
Pinheiro et al 2016 S ———" 0 so5 83 a3 Me D 5 A
L4 SSD500 VGG16 VOC + coco I 787 891 857 789 633 57.0 853 841 92
LA XN J
HFM_VGG16 [ 775 888 851 76.8 648 614 850 841 90.
IFRN_07+12 ) 766 87.8 839 79.0 645 589 822 82.0 9l

4.7 76.8 63.8 58.3 82.6 79.0 90

PASCAL detection leaderboard



Yolo: You Only Look Once

Jospeh Redmom et.al (resumé)

Class probabdty map
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* Each grid cell predicts
— 2 bounding boxes (x, y, w, h, confidence) = 10 reals
— Probabilities over 20 classes

* Final output: 7x7x30 tensor (30 = 5+5+20)
* “the fastest extant object detector” at CVPR 2016


https://pjreddie.com/static/Redmon%20Resume.pdf

Yolo 1,2,3...

{3 YOLOv3
RetinaNet-50

+ RetinaNet-101
Method mAP-50 time
[B] SSD321 454 61
[C] DSSD321 46.1 85
[D] R-FCN 51.9 85
[E] SSD513 50.4 125
[F] DSSD513 D ars 156
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RetinaNet-101-800 57.5 198

YOLOv3-320 51.5 22

YOLOv3-416 55.3 29

YOLOv3-608 57.9 51
| |
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Quotes from “YOLOv3: An Incremental
Improvement”:

Sometimes you just kinda phone it in for a
year, you know? ... Spent a lot of time on
Twitter. Played around with GANs a little.

YOLO: CVPR 2016
YOLO9000 (YOLOv2) = CVPR 2017
YOLOv3: Arxiv 2018



https://arxiv.org/pdf/1804.02767.pdf

Detectron

Detectron includes implementations of the following

e Mask R-CNN — Marr Prize at ICCV 2017
* RetinaNet — Best Student Paper Award at ICCV 2017
e Faster R-CNN

« RPN
e Fast R-CNN
e R-FCN

using the following backbone network architectures:

e ResNeXt{50,101,152}

* ResNet{50,101,152}

* Feature Pyramid Networks (with ResNet/ResNeXt)
» VGG16



