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-
Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat

his image by Nikita is
censed under CC-

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

.
The Problem: Semantic Gap

[[105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
[ 91 98 102 106 164 79 98 163 99 105 123 136 110 105 94 85]
[ 76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85]
[ 99 81 81 93 120 131 127 100 95 98 162 99 96 93 101 94]
[166 91 61 64 69 91 88 85 101 107 109 98 75 84 96 95]
[114 108 85 55 55 69 64 54 64 87 112 129 98 74 84 091]
[133 137 147 103 65 81 80 65 52 54 74 84 102 93 85 82]
» [128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101]
k [125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 098]
ok [127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84]
3 [115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
[ 89 93 9@ 97 108 147 131 118 113 114 113 109 106 95 77 80]
[ 63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87]
[ 62 65 82 89 78 71 80 101 124 126 119 101 107 114 131 119]
[63 65 75 88 89 71 62 81 120 138 135 105 81 98 110 118]
[ 87 65 71 87 186 95 69 45 76 130 126 107 92 94 105 112]
[118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107]
[164 146 112 80 82 120 124 104 76 48 45 66 88 101 102 109]
[157 170 157 120 93 86 114 132 112 97 63 55 70 82 99 94]
[130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86]
[128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]
[123 187 96 86 83 112 153 149 122 109 104 75 80 107 112 99]
[122 121 102 80 82 86 94 117 145 148 153 102 58 78 92 107]
[122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 84]]

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
This image by Niia = (3 channels RGB)

licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint

variation
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his image by Nikita is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

All pixels change when
the camera moves!



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: lllumination

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

is | by Umberto Salvagnin Ihis image by Umberto Salvagnin This image by sare bear is Ihis image by Tom Thai s
licensed under CC-| licensed under CC-BY 2.0
is licensed under CC-BY 2.0 is licensed under CC-BY 2.0 CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

This image by jonsson is licensed
under CC-BY 2.0

This image is CC0O 1.0 public domain This image is CCO 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Background Clutter

This image is CCO 1.0 public domain This image is CC0O 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Intraclass variation

This image is CC0O 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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An image classifier

def classify_image(image):

return cléss_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Attempts have been made

Find edges

A

Find corners
KA D

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ML: A Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels): alrplane .-
# Machine learning!
return model automoblle.
bird
def predict(model, test_images): cat
# Use model to predict labels
return test_labels deer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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-
Supervised Learning

Input: x (images, text, emails...)

Output: y (spam or non-spam...)

(Unknown) Target Function
- X2Y (the “true” mapping / reality)

Data
_ { (X'I’y'l)’ (XZ’YZ)’ SRR (XN’YN)}

(C) Dhruv Batra 16



-
Nearest neighbor

m B ®

o
<> Test o Training

Training [ exampl examples
examples = Pl @ . Ip .
from class 1 ] € @ 'romclass
= @

f(x) = label of the training example nearest to x

« All we need is a distance or similarity function for
our inputs

* No training required!



.
Support Vector Machines

NON-FACES
L] [

_—— -

Using complex features,
decision boundary in
original space can be
complex.

Decision Boundaries
Projected back from
Feature space




“Deep” vs. “shallow” (SVMs) Learning

® deep learnin ® support vector machines :
P 9 PR + Add comparison
Search term Search term
= Google Trends
United States ¥ 2004 - present ¥ All categories ¥ Web Search ¥
Interest over time ¥y o<

L _Note

Average Jan 1, 2004 Oct 1, 2009 Jul 1,2015




“Classic” recognition pipeline

Image Feature Trainable Class
Pixels representation classifier label

« Hand-crafted feature representation
« Off-the-shelf trainable classifier



.
“Deep” recognition pipeline

Image Simple

« Learn a feature hierarchy from pixels to
classifier

« Each layer extracts features from the output of
previous layer

« Train all layers jointly
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Review: CNNs

Input layer (S1) 4 feature maps
1 1 (Cl1) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps
] :
[iD :
Ty
@ W O
e
| convolution layer l sub-sampling layer | convolution layer | sub-sampling layer l fully connected MLPI
C3:f. maps 16@10x10
INPUT gg@:zfgagge maps S4: f. maps 16 @5x5
X
32x32 S2: f. maps C5: layer .
6@14x14 120 FE& layer ?8“"”
|
‘ \ Full conAection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
(C) Dhruv Batra 23

Image Credit: Yann LeCun, Kevin Murphy



CNN or ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

_
CONV,
RelLU
e.g.6
5x5x3
filters

28

28

_
CONV,
RelLU
e.g. 10
5x5x6
filters

10

24

24

CONV,
RelLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Layer

Learn multiple filters.

=@

=

E.g.: 200x200 image
100 Filters

Filter size: 10x10
10K parameters
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Fully Connected Layer

Example: 200x200 image
40K hidden units
‘ ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway.. -



Visualization of VGG-16 by Lane McIntosh. VGG-16

PreView [Zeller and Fergus 2013] architecture from [Simonyan and Zisserman 2014].
: : Linearly
Low-level Mid-level High-level
> > » separable >
features features features .
classifier

VGG-16 Conv1_1 VGG-16 Conva 2 VGG-16 Convs 3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Review: Neural Networks

INPUT + — 1 HIDDEN LAYER OUTPUT
Which properties do Test loss 0.020
you want to feed in? o = Training loss 0.013
4 neurons
X, | - e e e ] 7 | '_'fr
:IE T " i «"""ﬂ
‘\y_,” “‘
X | eyt \\ " "
= \\ Y .“‘
N o
\\\ - I---“ =
N, JI
\ e
.
~~~~

This
T

e output

from one neuron

to see it 0
larger.

Colors shows
data, neuronand ! ! !
weight values. ;

=]

[J Showtestdata [] Discretize output

http://playground.tensorflow.org/



http://playground.tensorflow.org/

How to minimize the loss by changing the weights?
Strategy: Follow the slope of the loss function

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Strategy: Follow the slope

In 1-dimension, the derivative of a function:

df(z) _ . flz+h)—f(@)

dx h —0 h

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Strategy: Follow the slope

In 1-dimension, the derivative of a function:

df(z) _ . fl@+h) - (@

dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



http://demonstrations.wolfram.com/VisualizingTheGradientVVector/

original W

-

negative gradient direction

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent

while |
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad : ;

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training of multi-layer networks

* Find network weights to minimize the prediction loss
between true and estimated labels of training examples:

© EWw) =2 IxyyW) OE
« Update weights by gradient descent: W < W — a%




Training of multi-layer networks

* Find network weights to minimize the prediction loss
between true and estimated labels of training examples:

° E(W) = Zil(xiryi;w) o
« Update weights by gradient descent¥ < W —&g

« Back-propagation: gradients are computed in the
direction from output to input layers and combined using
chain rule

« Stochastic gradient descent: compute the weight
update w.r.t. one training example (or a small batch of
examples) at a time, cycle through training examples in
random order in multiple epochs



R EEEEEEEE—————
Network with a single hidden layer

* Neural networks with at least one hidden layer are
universal function approximators

Input Hidden Output
layer layer layer

Input #1
Input #2 _

{ \) { - Output
Input #3

Input #4


http://neuralnetworksanddeeplearning.com/chap4.html

R EEEEEEEE—————
Network with a single hidden layer

Hidden layer size and network capacity:

3 hidden neurons 6 hidden neurons 20 hidden neurons
@ @
e © ® | ) ® | @ ° |
® @ © ® © @
© e @
® ® e ) © e ® ® o
@ @ @ @ @ &) [} @ ©
® 1) © o) ® @
® b4 o ® b ® © @
K ® ® - o ® o © % ® e ©
o} D o
® @ ® @ ] (]
© @ @ @ @ ©
@ [¢] ® © ® ® ® ® (]
@® ® @
(8] @ @

Source: http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/

-
Regularization

« Itis common to add a penalty (e.g., quadratic) on weight magnitudes to
the objective function:

E(w) = z (X3, y;; W) + Allwl|?
7

— Quadratic penalty encourages network to use all of its inputs “a little” rather than
a few inputs “a lot”

A =0.001 A =0.01 A=0.1

Source: http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/

Neural networks: Pros and cons

* Pros
— Flexible and general function approximation framework
— Can build extremely powerful models by adding more layers

« Cons
— Hard to analyze theoretically (e.g., training is prone to local
optima)
— Huge amount of training data, computing power may be
required to get good performance

— The space of implementation choices is huge (network
architectures, parameters)
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Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)= Wz are:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.

A loss function tells how
With some W the scores f(x,W)= Wz are:

good our current classifier is

Given a dataset of examples
N

Where x; is image and

cat 3.2 1.3 292 Y; is (integer) label

car 51 49 25 Loss over the dataset is a
sum of loss over examples:

frog -1.7 2.0 -3.1 |

L = ~ ZLz‘(f(wi»W)’yi)

)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(x,W)= Wz are:

Given an example (:Ei, yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

cat 3.2 Z <’o if 5., > 55+ 1
car 5.1 7 |85 — sy, +1 otherwise
1.7 z
frog = Z max(0,s; — s, + 1)
J7Yi

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores f(x,W)= Wz are:
“Hinge loss”
o
71
cat 3.2 1.3
0 if Sy, Z Sj + 1

car 5.1 4.9
frog -1.7 2.0

s; — 8y, +1 otherwise

ax(0,s; — sy, + 1)

delta
] — ;
scores for other classes score for correct class
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

score



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(x,W)= Wz are:

Given an example (:Ei, yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: $ = f($i> W)

the SVM loss has the form:

cat 32 1 3 2.2 L = Zj;éy,- max(0, s; — sy, + 1)
car 5.1 4.9 2.5 = max(0, 5.1 - 3.2 + 1)

+max(0, -1.7-3.2+ 1)
frog -1.7 20 '31 = max(0, 2.9) + max(0, -3.9)

=2.9+0
Losses: | 2.9 59

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(x,W)= Wz are:

Given an example (:Ei, yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: $ = f($i> W)

the SVM loss has the form:

cat 32 1 3 2.2 L = Zj;éy,- max(0, s; — sy, + 1)
car 5.1 4.9 2.5 = max(0, 1.3 - 4.9 + 1)

+max(0,2.0-4.9 + 1)
frog -1.7 20 '31 = max(0, -2.6) + max(0, -1.9)

Losses: 2.9 0 o0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(x,W)= Wz are:

Given an example (:Ei, yz-)
where z; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: $ = f($i> W)

the SVM loss has the form:

cat 3.2 1.3 22 | 1 = T
car 5.1 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)
frog -1.7 20 '31 = max(0, 6.3) + max(0, 6.6)

Losses: 2.9 0 129 - (15.23.9+ 6.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(x,W)= Wz are:

Given an example (:Ei, yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: $ = f($i> W)

the SVM loss has the form:

cat 3.2 1.3 2.2 ST re——
car 5 - 1 4'9 2 - 5 Loss over full dataset is average:
frog 1.7 20 -3.1 fij= o5 I

Losses: 2.9 0 12.9 L=(29+0+12.9)3
= 5.27

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



go!tmax approach to

dealing with multiple classes

 If we need to classify inputs into C different classes,
we put C units in the last layer to produce C one-vs.-
others scores f1, >, ..., fc

« Apply softmax function to convert these scores to
probabilities:

_( exp(f) exp(fc)
SOftmaX(f]_; e fc) T (Z] eXp(f]) ) mrny Z] exp(f]))

If one of the inputs is much larger than the others, then the
corresponding softmax value will be close to 1 and others will be close

to0
« Use log likelihood (cross-entropy) loss:

* I(x;y;w) = —log PBy(y; | X;)
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-
Gradient Descent has a problem

1 N Full sum expensive
L(W) = 7 Z Li(zi,y;, W) + AR(W) when N is large!
i=1

N
1
VwL(W) =+ > VwLi(zi, yi, W) + AVw R(W)

1=1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Stochastic Gradient Descent (SGD)

1 N Full sum expensive
L(W) = 7 Z Li(zi,y;, W) + AR(W) when N is large!
i=1

1 N Approximate sum
Vi L(W) = N Z VwiLi(zi,yi, W)+ AV R(W) gi!\r?];erglnlbatch of

=1 32 /64 / 128 common

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Neural Network Training

« Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 55



-
Neural Network Training

« Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 56



-
Neural Network Training

« Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 57



-
Neural Network Training

« Step 1: Compute Loss on mini-batch [F-Pass]
« Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 58



-
Neural Network Training

« Step 1: Compute Loss on mini-batch [F-Pass]
« Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 59



-
Neural Network Training

« Step 1: Compute Loss on mini-batch [F-Pass]
« Step 2: Compute gradients wrt parameters [B-Pass]
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-
Neural Network Training

« Step 1: Compute Loss on mini-batch [F-Pass]
« Step 2: Compute gradients wrt parameters [B-Pass]
« Step 3: Use gradient to update parameters

(C) Dhruv Batra 61
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How do we compute gradients?

Analytic or “Manual” Differentiation

Symbolic Differentiation

 Numerical Differentiation

 Automatic Differentiation
— Forward mode AD

— Reverse mode AD
» aka “backprop”

(C) Dhruv Batra 63



-
Numerical vs Analytic Gradients

df(z) _ . fl@+h) - f(@

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your

Implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



s
Automatic Differentiation

* Notation
f(x1,29) = x129 + sin(xq)

(C) Dhruv Batra 65



-
Computational Graphs

f(x1,29) = 2122 + sin(xq)

(C) Dhruv Batra 66



-
Example: Forward mode AD

f(x1,29) = 2122 + sin(xq)

A | t

W3 = W1 + W2

w1 = cos(x1)T1 o = T1T9 + T1T9

(C) Dhruv Batra 67




Example: Reverse mode AD
f(x1,29) = 2122 + sin(xq)

T

w3 = 1

r1 = Wq COS(£E1> T1 = W2T2 To = Wolq

L S

(C) Dhruv Batra 68




Forward Pass vs

Forward mode AD vs Reverse Mode AD

f(z1,x9) = 2122 + sin(xq)

Gin(D (D
<D Cx)
A R T _|
w1 = cos(x1)Ty We = 19 + T1d9 Wi = W3 Wy = W3
PR . T1 = Wi cos(T1) Ti1 = Wala Ty = Waly

tra



