
Deep Learning

Frank Dellaert
CS x476 Computer Vision

Many slides from Stanford’s CS231N by Fei-Fei Li, Justin Johnson, Serena Yeung, as well as some slides on filtering from Devi
Parikh and Kristen Grauman, who may in turn have borrowed some from others

Image Classification
Supervised Learning

CNN Review
Training CNNs
Loss Functions

Stochastic Gradient Descent
Computing Gradients

Image Classification: A core task in Computer Vision

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

This image by Nikita is
licensed under CC-BY 2.0

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint variation

All pixels change when
the camera moves!

This image by Nikita is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Illumination

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by Tom Thai is
licensed under CC-BY 2.0

This image by sare bear is
licensed under CC-BY 2.0

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Occlusion

This image is CC0 1.0 public domain This image by jonsson is licensed
under CC-BY 2.0This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Background Clutter

This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Image Classification
Supervised Learning

CNN Review
Training CNNs
Loss Functions

Stochastic Gradient Descent
Computing Gradients

An image classifier

12

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Attempts have been made

13

John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ML: A Data-Driven Approach

14

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Prediction

Steps

Image
Features

Testing

Test Image

Learned
model

Slide credit: D. Hoiem

Training
Labels

Training
Images

Trainin
g

Training

Image
Feature

s

Learned
model

“apple”

Supervised Learning
• Input: x (images, text, emails…)

• Output: y (spam or non-spam…)

• (Unknown) Target Function
– f: X à Y (the “true” mapping / reality)

• Data
– { (x1,y1), (x2,y2), …, (xN,yN) }

• Model / Hypothesis Class
– H = {h: X à Y}
– e.g. y = h(x) = sign(wTx)

• Learning = Search in hypothesis space
– Find best g in model class.

(C) Dhruv Batra 16

Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance or similarity function for
our inputs

• No training required!

Test
exampl

e

Training
examples

from class 1

Training
examples

from class 2

Support Vector Machines

Using complex features,
decision boundary in
original space can be
complex.

Decision Boundaries
Projected back from

Feature space

“Deep” vs. “shallow” (SVMs) Learning

“Classic” recognition pipeline

Feature
representation

Trainable
classifier

Image
Pixels

• Hand-crafted feature representation
• Off-the-shelf trainable classifier

Class
label

“Deep” recognition pipeline

• Learn a feature hierarchy from pixels to
classifier

• Each layer extracts features from the output of
previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3
Simple

Classifier
Image
pixels

Image Classification
Supervised Learning

CNN Review
Training CNNs
Loss Functions

Stochastic Gradient Descent
Computing Gradients

Review: CNNs
a

(C) Dhruv Batra 23

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy

CNN or ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10

10K parameters

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato
(C) Dhruv Batra 25

26

Example: 200x200 image
40K hidden units

~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

Fully Connected Layer

Slide Credit: Marc'Aurelio Ranzato

Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Classification
Supervised Learning

CNN Review
Training CNNs
Loss Functions

Stochastic Gradient Descent
Computing Gradients

Review: Neural Networks

http://playground.tensorflow.org/

http://playground.tensorflow.org/

How to minimize the loss by changing the weights?
Strategy: Follow the slope of the loss function

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

original W

negative gradient direction
W_1

W_2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Find network weights to minimize the prediction loss
between true and estimated labels of training examples:

• 𝐸 𝐰 = ∑! 𝑙(𝐱! , 𝑦!; 𝐰)
• Update weights by gradient descent:

Training of multi-layer networks

w
ww

¶
¶

-¬
Ea

w1

w2

• Find network weights to minimize the prediction loss
between true and estimated labels of training examples:

• 𝐸 𝐰 = ∑! 𝑙(𝐱! , 𝑦!; 𝐰)
• Update weights by gradient descent:

• Back-propagation: gradients are computed in the
direction from output to input layers and combined using
chain rule

• Stochastic gradient descent: compute the weight
update w.r.t. one training example (or a small batch of
examples) at a time, cycle through training examples in
random order in multiple epochs

Training of multi-layer networks

w
ww

¶
¶

-¬
Ea

Network with a single hidden layer
• Neural networks with at least one hidden layer are

universal function approximators

http://neuralnetworksanddeeplearning.com/chap4.html

Network with a single hidden layer
Hidden layer size and network capacity:

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Regularization
• It is common to add a penalty (e.g., quadratic) on weight magnitudes to

the objective function:

𝐸 𝐰 =,
!

𝑙(𝐱! , 𝑦!; 𝐰) + 𝜆 𝐰 "

– Quadratic penalty encourages network to use all of its inputs “a little” rather than
a few inputs “a lot”

Source: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Neural networks: Pros and cons
• Pros

– Flexible and general function approximation framework
– Can build extremely powerful models by adding more layers

• Cons
– Hard to analyze theoretically (e.g., training is prone to local

optima)
– Huge amount of training data, computing power may be

required to get good performance
– The space of implementation choices is huge (network

architectures, parameters)

Image Classification
Supervised Learning

CNN Review
Training CNNs
Loss Functions

Stochastic Gradient Descent
Computing Gradients

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

A loss function tells how
good our current classifier is

Given a dataset of examples

Where is image and
is (integer) label

Loss over the dataset is a
sum of loss over examples:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

“Hinge loss”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Losses: 2.9

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Losses:

= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 002.9

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Losses:

= max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.912.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores are:

Multiclass SVM loss:

Given an example
where is the image and
where is the (integer) label,

and using the shorthand for the
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3
= 5.27

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Softmax approach to
dealing with multiple classes

• If we need to classify inputs into C different classes,
we put C units in the last layer to produce C one-vs.-
others scores 𝑓/, 𝑓0, … , 𝑓1

• Apply softmax function to convert these scores to
probabilities:

softmax 𝑓/, … , 𝑓2 = 345(6!)
∑" 345(6")

, … , 345(6#)
∑" 345(6")

If one of the inputs is much larger than the others, then the
corresponding softmax value will be close to 1 and others will be close
to 0

• Use log likelihood (cross-entropy) loss:
• 𝑙 𝐱7, 𝑦7; 𝐰 = −log 𝑃𝐰 𝑦7 | 𝐱7

Image Classification
Supervised Learning

CNN Review
Training CNNs
Loss Functions

Stochastic Gradient Descent
Computing Gradients

Full sum expensive
when N is large!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Gradient Descent has a problem

Full sum expensive
when N is large!

Approximate sum
using a minibatch of
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 55Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 56Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 57Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 58Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 59Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 60Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]
• Step 3: Use gradient to update parameters

(C) Dhruv Batra 61Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Image Classification
Supervised Learning

CNN Review
Training CNNs
Loss Functions

Stochastic Gradient Descent
Computing Gradients

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 63

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

Automatic Differentiation
• Notation

(C) Dhruv Batra 65

f(x1, x2) = x1x2 + sin(x1)

Computational Graphs

(C) Dhruv Batra 66

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

(C) Dhruv Batra 67

+

sin()

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)

(C) Dhruv Batra 68

Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1

Forward Pass vs
Forward mode AD vs Reverse Mode AD

(C) Dhruv Batra 69

+

sin()

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

+

sin()

x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

ẇ1 = cos(x1)ẋ1

x1

+

sin()

x1 x2

*

f(x1, x2) = x1x2 + sin(x1)

