
3.1 Point operators 101
3.1.1 Pixel transforms 103
3.1.2 Color transforms 104
3.1.3 Compositing and matting 105
3.1.4 Histogram equalization 107
3.1.5 Application: Tonal adjustment 111
3.2 Linear filtering 111
3.2.1 Separable filtering 115
3.2.2 Examples of linear filtering 117
3.2.3 Band-pass and steerable filters 118
3.3 More neighborhood operators 122
3.3.1 Non-linear filtering 122
3.3.2 Morphology 127
3.3.3 Distance transforms 129
3.3.4 Connected components 131
3.4 Fourier transforms 132
3.4.1 Fourier transform pairs 136
3.4.2 Two-dimensional Fourier transforms 140
3.4.3 Wiener filtering 140
3.4.4 Application: Sharpening, blur, and noise removal 144
3.5 Pyramids and wavelets 144
3.5.1 Interpolation 145
3.5.2 Decimation 148
3.5.3 Multi-resolution representations 150
3.5.4 Wavelets 154
3.5.5 Application: Image blending 160

3.1.1 Pixel transforms

- Contrast
- Brightness
- Gamma
- Histogram equalization
- Arithmetic
- Compositing

Contrast

- $g(x)=a f(x), a=1.1$

Brightness

- $g(x)=f(x)+b, b=16$

Gamma correction

$$
g(\boldsymbol{x})=[f(\boldsymbol{x})]^{1 / \gamma}
$$

- gamma $=1.2$

Histogram Equalization

- Non-linear transform to make histogram flat
- Still a per-pixel operation $\mathrm{g}(\mathrm{x})=\mathrm{h}(\mathrm{f}(\mathrm{x}))$

Point-Process: Pixel/Point Arithmetic

120	122	140	142	143
121	120	141	144	147
122	121	144	146	11
125	121	144	145	10
126	121	145	147	13

120	122	140	142	143
121	120	141	144	147
122	121	144	146	11
125	121	144	145	10
126	121	145	147	13

+	120	122	140	142	143
	121	80	40	144	10
	122	81	40	0	151
	125	80	40	0	152
	126	70	40	0	153
-	120	122	140	142	143
	121	80	40	144	10
	122	81	40	0	151
	125	80	40	0	152
	126	70	40	0	153

240	244	280	284	286
121	200	181	288	157
122	202	184	146	162
125	201	184	145	164
126	191	185	147	166
0 0 0 0 0 0 40 101 0 137 0 40 104 146 -140 0 40 104 145 -142 0 191 185 147 -140				

Pixel/Point Arithmetic: An Example

Image 1 - Image 2

Binary(Image 1 - Image 2)
3.1 Point operators 101
3.1.1 Pixel transforms 103
3.1.2 Color transforms 104
3.1.3 Compositing and matting 105
3.1.4 Histogram equalization 107
3.1.5 Application: Tonal adjustment 111
3.2 Linear filtering 111
3.2.1 Separable filtering 115
3.2.2 Examples of linear filtering 117
3.2.3 Band-pass and steerable filters 118
3.3 More neighborhood operators 122
3.3.1 Non-linear filtering 122
3.3.2 Morphology 127
3.3.3 Distance transforms 129
3.3.4 Connected components 131
3.4 Fourier transforms 132
3.4.1 Fourier transform pairs 136
3.4.2 Two-dimensional Fourier transforms 140
3.4.3 Wiener filtering 140
3.4.4 Application: Sharpening, blur, and noise removal 144
3.5 Pyramids and wavelets 144
3.5.1 Interpolation 145
3.5.2 Decimation 148
3.5.3 Multi-resolution representations 150
3.5.4 Wavelets 154
3.5.5 Application: Image blending 160

Image filtering

- Image filtering: compute function of local neighborhood at each position
- Really important!
- Enhance images
- Denoise, resize, increase contrast, etc.
- Extract information from images
- Texture, edges, distinctive points, etc.
- Detect patterns
- Template matching
- Convolutional Networks

Example: box filter

Slide credit: David Lowe (UBC)

Image filtering

$$
\mathrm{g}[\cdot \cdot]_{0}^{\frac{1}{0}} \frac{1}{\frac{1}{1}} \frac{1}{1} \frac{1}{1}+1
$$

Image filtering

$$
\mathrm{g}\left[\cdot, \cdot \frac{1}{6} \frac{1}{\frac{1}{2}} \frac{1}{1} \frac{1}{1}+1\right.
$$

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Credit: S. Seitz

Image filtering

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Credit: S. Seitz

Image filtering

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Credit: S. Seitz

Image filtering

$$
\mathrm{g}\left[\cdot, \cdot \frac{1}{6} \frac{1}{\frac{1}{2}} \frac{1}{1} \frac{1}{1}+1\right.
$$

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Credit: S. Seitz

Image filtering

$$
\mathrm{g}\left[\cdot, \cdot \frac{1}{6} \frac{1}{\frac{1}{2}} \frac{1}{1} \frac{1}{1}+1\right.
$$

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Credit: S. Seitz

Image filtering

$$
\mathrm{g}[\cdot \cdot]_{0}^{\frac{1}{0}} \frac{1}{\frac{1}{1}} \frac{1}{1} \frac{1}{1}+1
$$

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Credit: S. Seitz

Image filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

$$
\mathrm{g}[\cdot, \cdot]
$$

Slide credit: David Lowe (UBC)

Smoothing with box filter

Practice with linear filters

0	0	0
0	1	0
0	0	0

?

Original

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Filtered
(no change)

Practice with linear filters

0	0	0
0	0	1
0	0	0

?

Original

Practice with linear filters

Original

0	0	0
0	0	1
0	0	0

Shifted left
By 1 pixel

Practice with linear filters

0	0	0
0	2	0
0	0	0

(Note that filter sums to 1)
Original

Practice with linear filters

Original

0	0	0
0	2	0
0	0	0

Sharpening filter

- Accentuates differences with local average

Sharpening

Other filters

Vertical Edge (absolute value)

Other filters

Horizontal Edge (absolute value)

Filtering vs. Convolution

- 2d filtering ${ }^{\mathrm{f}=\mathrm{filter}} \quad \mathrm{I}=$ image

$$
\begin{aligned}
& -\mathrm{h}=\mathrm{filter} 2(\mathrm{f}, \mathrm{I}) ; \text { or } \\
& \mathrm{h}=\operatorname{imfil} \operatorname{ter}(\mathrm{I}, \mathrm{f}) ; \\
& \quad h[m, n]=\sum_{k, l} f[k, l] I[m+k, n+l]
\end{aligned}
$$

- 2d convolution
- h=conv2 (f, I);

$$
h[m, n]=\sum_{k, l} f[k, l] I[m-k, n-l]
$$

Key properties of linear filters

Linearity:

```
imfilter(I, f f + fr2) =
    imfilter(I,f1) + imfilter(I,f2)
```

Shift invariance: same behavior regardless of pixel location

```
imfilter(I,shift(f)) = shift(imfilter(I,f))
```

Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: $a^{*} b=b^{*} a$
- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality
- Associative: $a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c$
- Often apply several filters one after another: $\left(\left(\left(a * b_{1}\right) * b_{2}\right) * b_{3}\right)$
- This is equivalent to applying one filter: a ${ }^{*}\left(b_{1} * b_{2} * b_{3}\right)$
- Distributes over addition: $a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right)$
- Scalars factor out: $k a^{*} b=a^{*} k b=k\left(a^{*} b\right)$
- Identity: unit impulse $e=[0,0,1,0,0]$, $a^{*} e=a$

Important filter: Gaussian

- Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003
$5 \times 5, \sigma=1$				

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Images become more smooth
- Convolution with self is another Gaussian
- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width ov2
- Separable kernel
- Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$
\begin{aligned}
\mathcal{G}_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{\left.-\frac{x^{2}}{2 \sigma^{2}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right)}\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

Followed by convolution
along the remaining column:

Hybrid Images

- A. Oliva, A. Torralba, P.G. Schyns, "Hybrid Images," SIGGRAPH 2006

Why do we get different, distance-dependent interpretations of hybrid images?

3.1 Point operators 101
3.1.1 Pixel transforms 103
3.1.2 Color transforms 104
3.1.3 Compositing and matting 105
3.1.4 Histogram equalization 107
3.1.5 Application: Tonal adjustment 111
3.2 Linear filtering 111
3.2.1 Separable filtering 115
3.2.2 Examples of linear filtering 117
3.2.3 Band-pass and steerable filters 118
3.3 More neighborhood operators 122
3.3.1 Non-linear filtering 122
3.3.2 Morphology 127
3.3.3 Distance transforms 129
3.3.4 Connected components 131
3.4 Fourier transforms 132
3.4.1 Fourier transform pairs 136
3.4.2 Two-dimensional Fourier transforms 140
3.4.3 Wiener filtering 140
3.4.4 Application: Sharpening, blur, and noise removal 144
3.5 Pyramids and wavelets 144
3.5.1 Interpolation 145
3.5.2 Decimation 148
3.5.3 Multi-resolution representations 150
3.5.4 Wavelets 154
3.5.5 Application: Image blending 160

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

Bilateral filtering

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Morphological Operators

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5×5 square. The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the dot, since it is not wide enough.
3.1 Point operators 101
3.1.1 Pixel transforms 103
3.1.2 Color transforms 104
3.1.3 Compositing and matting 105
3.1.4 Histogram equalization 107
3.1.5 Application: Tonal adjustment 111
3.2 Linear filtering 111
3.2.1 Separable filtering 115
3.2.2 Examples of linear filtering 117
3.2.3 Band-pass and steerable filters 118
3.3 More neighborhood operators 122
3.3.1 Non-linear filtering 122
3.3.2 Morphology 127
3.3.3 Distance transforms 129
3.3.4 Connected components 131
3.4 Fourier transforms 132
3.4.1 Fourier transform pairs 136
3.4.2 Two-dimensional Fourier transforms 140
3.4.3 Wiener filtering 140
3.4.4 Application: Sharpening, blur, and noise removal 144
3.5 Pyramids and wavelets 144
3.5.1 Interpolation 145
3.5.2 Decimation 148
3.5.3 Multi-resolution representations 150
3.5.4 Wavelets 154
3.5.5 Application: Image blending 160

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Why does a lower resolution image still make sense to us? What do we lose?

Thinking in Frequency

Fourier, Joseph (1768-1830)

French mathematician who discovered that any periodic motion can be written as a superposition of sinusoidal and cosinusoidal vibrations. He developed a mathematical theory of heat in Théorie Analytique de la Chaleur (Analytic Theory of Heat), (1822), discussing it in terms of differential equations.

Fourier was a friend and advisor of Napoleon. Fourier believed that his health
would be improved by wrapping himself up in blankets, and in this state he tripped down the stairs in his house and killed himself. The paper of Galois which he had taken home to read shortly before his death was never recovered.

SEE AISO: Galois

Additional biographies: MacTutor (St. Andrews), Bonn
© 1996-2007 Eric W. Weisstein

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807): Any univariate function can rewritten as a weighted sum sines and cosines of differen frequencies.

- Don't believe it?
- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!
- But it's (mostly) true!
- called Fourier Series
- there are some subtle restrictions equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

Example: Music

- We think of music in terms of frequencies at different magnitudes

Frequency Spectra

- example : $g(t)=\sin (2 \pi f t)+(1 / 3) \sin (2 \pi(3 f) t)$

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Fourier analysis in images

Intensity Image

Fourier Image

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
- Magnitude encodes how much signal there is at a particular frequency
- Phase encodes spatial information (indirectly)
- For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude: $\quad A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}}$
Phase: $\phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}$

Fourier Transform Pairs

Name	Signal		Transfo	
impulse	$\delta(x)$	\Leftrightarrow	1	
shifted impulse	$\delta(x-u)$	\Leftrightarrow	$e^{-j \omega u}$	
box filter	$\operatorname{box}(x / a)$	\Leftrightarrow	$a \operatorname{sinc}(a \omega)$	
tent	tent (x / a)	\Leftrightarrow	$a \operatorname{sinc}^{2}(a \omega)$	
Gaussian	$G(x ; \sigma)$	\Leftrightarrow	$\frac{\sqrt{2 \pi}}{\sigma} G\left(\omega ; \sigma^{-1}\right)$	
Laplacian of Gaussian	$\left(\frac{x^{2}}{\sigma^{4}}-\frac{1}{\sigma^{2}}\right) G(x ; \sigma)$	\Leftrightarrow	$-\frac{\sqrt{2 \pi}}{\sigma} \omega^{2} G\left(\omega ; \sigma^{-1}\right)$	$A H$
Gabor	$\cos \left(\omega_{0} x\right) G(x ; \sigma)$	\Leftrightarrow	$\frac{\sqrt{2 \pi}}{\sigma} G\left(\omega \pm \omega_{0} ; \sigma^{-1}\right)$	
unsharp mask	$(1+\gamma) \delta(x)$	\Leftrightarrow	$\begin{gathered} (1+\gamma)- \\ \sqrt{2 \pi} \gamma \end{gathered}$	
windowed	$\operatorname{rcos}(x /(a W))$	\Leftrightarrow	(see Figure 3.29)	

Fourier Transforms of Filters

```
box-3
```


$\frac{1}{3}(1+2 \cos \omega)$
box-5

$\frac{1}{5}(1+2 \cos \omega+2 \cos 2 \omega)$
linear

$\frac{1}{4}$	1	2

$\frac{1}{2}(1+\cos \omega)$
binomial

$\frac{1}{16}$	1	4	6	4

$\frac{1}{4}(1+\cos \omega)^{2}$

Sobel

$$
\begin{array}{|l|l|l|}
\frac{1}{2}-1 & 0 & 1 \\
\hline
\end{array}
$$

$\sin \omega$

Man-made Scene

Can change spectrum, then reconstruct

Low and High Pass filtering

The Convolution Theorem

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

$$
g^{*} h=\mathrm{F}^{-1}[\mathrm{~F}[g] \mathrm{F}[h]]
$$

Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

Filtering in frequency domain

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian

Box Filter

