

Image Formation

Image Formation

2.1.1 Geometric Primitives

• 2D points:
• 2D lines:
• 2D conics:
• 3D points:
• 3D planes:
• 3D lines:

2D Coordinate Frames & Points

i

j

p = (x,y)T

• 2D coordinates x and y
• Point p = (x, y)

o

2D Lines

i

j

p=(x, y)T

• Line l = (a, b, c)
• Point p coincides with line iff ax + by = c

(a,b)T

c

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

homogeneous image
coordinates

homogeneous scene
coordinates

Converting from homogeneous coordinates

Homogeneous Coordinates
• Uniform treatment of points and lines
• Line-point incidence: lTp=0

i

j

p=(x,y,1)T~(kx, ky, k)T

(a,b)T

c

l=(a, b, c)T~(ka, kb, kc)T

Stay the same when scaled:

Join = cross product !
• Join of two lines is a point:

p=l1 x l2

• Join of two points is a line:
l=p1 x p2

Automatic estimation of vanishing points
and lines

Joining two parallel lines ?

(a,b,c)

(a,b,c)

(a,b,d)

Points at Infinity !

i

j

l=(a,b,c)T

(-b,a,0)T

(-b,a,0)T
Line at infinity
linf=(0,0,1)T

2.1.1 Geometric Primitives

• 2D points: (x,y),
• 2D lines:
• 2D conics:
• 3D points:
• 3D planes:
• 3D lines:

homogeneous

2.1.1 Geometric Primitives

• 2D points: (x,y),
• 2D lines:
• 2D conics:
• 3D points:
• 3D planes:
• 3D lines:

homogeneous augmented

2.1.1 Geometric Primitives

• 2D points: (x, y),
• 2D lines:
• 2D conics:
• 3D points:
• 3D planes:
• 3D lines:

homogeneous augmented

See Chapter 2.1.1 for
conics, quadrics, 3D lines

2.1.2: 2D Transformations

translation rotation aspect

affine perspective cylindrical

2.1.2: 2D Transformations

2D transformation slides adapted from CMU courses by Gkioulekas, Kitani

2D planar transformations

• Each component multiplied by a scalar
• Uniform scaling - same scalar for each

component

Scale

How would you implement scaling?

• Each component multiplied by a scalar
• Uniform scaling - same scalar for each

component

Scale
What’s the effect of using

different scale factors?

• Each component multiplied by a scalar
• Uniform scaling - same scalar for each

component

Scale

scaling matrix S

matrix representation of scaling:

rotation around
the origin

How would you implement rotation?

rotation around
the origin

rotation around
the origin

or in matrix form:

Rotation matrix:
• Columns are unit vectors
• Columns are mutually orthogonal
• Inverse is transpose

2D planar and linear transformations

Scale

Rotate

Shear

Flip across y

Flip across origin

Identity

2D translation

How would you implement translation?

2D translation

What about matrix representation?

2D translation

What about matrix representation?

Not possible.

2D translation

What about matrix representation
using homogenous coordinates?

2D translation

What about matrix representation
using augmented coordinates?

2D translation using
homogeneous coordinates

2D Transformations
in homogeneous coordinates

Reminder: Homogeneous coordinates

Conversion:

• inhomogeneous →
augmented/homogeneous

• homogeneous → inhomogeneous

• scale invariance

Special points:

• point at infinity

• undefined

2D transformations
Re-write these transformations as 3x3 matrices:

translation

rotation shearing

scaling

?

??

2D transformations
Re-write these transformations as 3x3 matrices:

translation

rotation shearing

scaling

??

2D transformations
Re-write these transformations as 3x3 matrices:

translation

rotation shearing

scaling

?

2D transformations
Re-write these transformations as 3x3 matrices:

translation

rotation shearing

scaling

Matrix composition
Transformations can be combined by matrix multiplication:

p’ = ? ? ? p

Matrix composition
Transformations can be combined by matrix multiplication:

p’ = translation(tx,ty) rotation(θ) scale(s,s) p

Does the multiplication order matter?

Classification of 2D transformations

Classification of 2D transformations

Classification of 2D transformations

?

?

?

?

?

Translation

Translation:

How many degrees of freedom?

Euclidean/Rigid

Euclidean (rigid):
rotation + translation

How many degrees of freedom?

Affine

Affine transform:
uniform scaling + shearing

+ rotation + translation

Are there any values that are related?

Affine transformations
Affine transformations are combinations of
• arbitrary (4-DOF) linear transformations

• + translations

Properties of affine transformations:

• origin does not necessarily map to origin
• lines map to lines

• parallel lines map to parallel lines

• ratios are preserved

• compositions of affine transforms are also
affine transforms

Does the last coordinate w ever
change?

Projective transformations
Projective transformations are combinations of
• affine transformations;

• + projective wraps

Properties of projective transformations:

• origin does not necessarily map to origin
• lines map to lines

• parallel lines do not necessarily map to parallel lines

• ratios are not necessarily preserved

• compositions of projective transforms are also
projective transforms

How many degrees of freedom?8 DOF: vectors (and therefore
matrices) are defined up to scale)

Classification of 2D transformations

?

?

?

?

?

Classification of 2D transformations

2

3

4

6

8

2.1.3: 3D Transformations

• Need a way to specify the six degrees-of-freedom
of a rigid body.

• Why are there 6 DOF?

A rigid body is a
collection of points
whose positions
relative to each
other can’t change

Fix one point,
three DOF

Fix second point,
two more DOF
(must maintain
distance constraint)

Third point adds
one more DOF,
for rotation
around line

Notations

• Superscript references coordinate frame
• AP is coordinates of P in frame A
• BP is coordinates of P in frame B

• Example :

Translation

• Using augmented/homogeneous coordinates,
translation is expressed as a matrix multiplication.

• Translation is commutative

Rotation in homogeneous coordinates
• Using homogeneous coordinates, rotation can be expressed

as a matrix multiplication.

• R is a rotation matrix:
– Columns are unit vectors
– Columns are mutually orthogonal
– Inverse is transpose

• Rotation is not commutative

3D Rigid transformations

3D Rigid transformations

• Unified treatment using homogeneous
coordinates.

• Subgroup Structure:
– Translation (? DOF)
– Rigid 3D (? DOF)
– Affine (? DOF)
– Projective (? DOF)

Hierarchy of 3D
Transforms

• Subgroup Structure:
– Translation (3 DOF)
– Rigid 3D (6 DOF)
– Affine (12 DOF)
– Projective (15 DOF)

Hierarchy of 3D
Transforms

2.1.5: 3D to 2D: Projection

Point of observation

Figures © Stephen E. Palmer, 2002

3D world 2D image

Orthographic Projection

Pinhole camera

Figure from Forsyth

f

f = focal length
c = center of the camera

c

Pre-history: the Camera obscura
• Known during classical period in China and Greece

(e.g. Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph
– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Projection can be tricky…
Slide source: Seitz

Projection can be tricky…
Slide source: Seitz

Camera and World Geometry

How tall is this woman?

Which ball is closer?

How high is the camera?

What is the camera
rotation?

What is the focal length of
the camera?

Pinhole Camera
• Fundamental equation:

k

O

M

Q

j

i
m

q

C

€

(x, y, z)→ (f x
z
, f y
z
)

f

Homogeneous Coordinates

Linear transformation of homogeneous (projective) coordinates

m =
u
v
w

!

"

#
#
#

$

%

&
&
&
= [I 0]M =

1 0 0 0

0 1 0 0

0 0 1 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

X
Y
Z
T

!

"

#
#
#
#

$

%

&
&
&
&

Recover image (Euclidean) coordinates by normalizing:

û =
u
w

=
X
Z

v̂ =
v
w

=
Y
Z

We can see infinity !

Railroad: parallel lines

P=(0,0,1,0)T

p=MP=(0,0,1)T

Vanishing points and lines

oVanishing Point o
Vanishing Point

Vanishing Line

Vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi

Pixel coordinates in 2D

j

i(u0,v0)

640

480

€

u0 + kf X
Z
,v0 + lf Y

Z
"

$

%

&
'

(640.0,480.0)

(0.0,0.0)

(0.5,0.5)

(639.5,479.5)

Intrinsic Calibration

€

3 × 3 Calibration Matrix K

m =

u
v
w

$

%
%
%

&

'

(
(
(

= K[I 0]M =

α s u0

β v0

1

$

%
%
%

&

'

(
(
(

1 0 0 0
0 1 0 0
0 0 1 0

$

%
%
%

&

'

(
(
(

X
Y
Z
T

$

%
%
%
%

&

'

(
(
(
(

Recover image (Euclidean) coordinates by normalizing :

ˆ u =
u
w

=
αX + sY + u0

Z

ˆ v =
v
w

=
βY + v0

Z

skew

5 Degrees of Freedom !

Camera Pose

In order to apply the camera model, objects in the scene
must be expressed in camera coordinates.

World
Coordinates

Camera
Coordinates

Calibration target looks tilted from camera
viewpoint. This can be explained as a
difference in coordinate systems.

€

w
cT

€

y

€

x

€

z

€

z

€

x

€

y

Projective Camera Matrix

€

Camera = Calibration × Projection × Extrinsics

m =

u
v
w

$

%
%
%

&

'

(
(
(

=

α s u0
β v0

1

$

%
%
%

&

'

(
(
(

1 0 0 0
0 1 0 0
0 0 1 0

$

%
%
%

&

'

(
(
(

R t
0 1

$
%

&

'
(

X
Y
Z
T

$

%
%
%
%

&

'

(
(
(
(

= K R t[]M = PM

5+6 DOF = 11 !

Projective Geometry

What is lost?
• Length

Which is closer?

Who is taller?

Length and area are not preserved

Figure by David Forsyth

B’

C’

A’

Projective Geometry

What is lost?
• Length
• Angles

Perpendicular?

Parallel?

Projective Geometry

What is preserved?
• Straight lines are still straight

Field of View (Zoom, focal length)

2.1.6 Radial Distortion

Image from Martin Habbecke

Corrected Barrel Distortion

