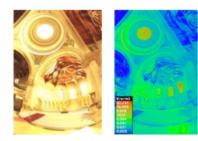


9. Stitching

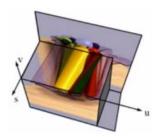
12. 3D Shape

3. Image Processing

6-7. Structure from Motion

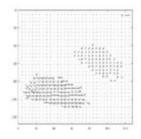


10. Computational Photography



13. Image-based Rendering

4. Features



8. Motion

11. Stereo

14. Recognition

Image Formation

2.1	Geome	etric primitives and transformations	31
	2.1.1	Geometric primitives	32
	2.1.2	2D transformations	35
	2.1.3	3D transformations	. 39
	2.1.4	3D rotations	41
	2.1.5	3D to 2D projections	46
	2.1.6	Lens distortions	58
2.2	Photon	metric image formation	60
	2.2.1	Lighting	60
	2.2.2	Reflectance and shading	62
	2.2.3	Optics	68
2.3	The dig	gital camera	73
	2.3.1	Sampling and aliasing	. 77
	2.3.2	Color	. 80
	2.3.3	Compression	90
2.4	Additio	onal reading	93
2.5	Exercis	ses	93

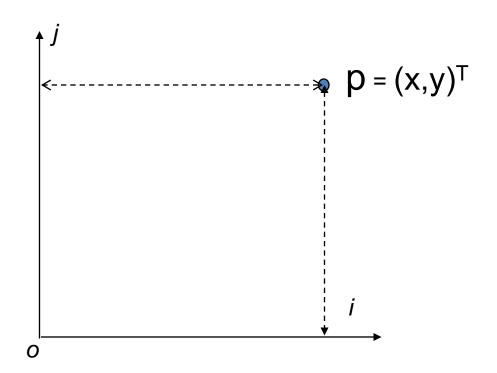
Image Formation

	2.1	Geome	etric primitives and transformations	31
		2.1.1	Geometric primitives	32
		2.1.2	2D transformations	35
		2.1.3	3D transformations	39
		2.1.4	3D rotations	41
		2.1.5	3D to 2D projections	46
		2.1.6	Lens distortions	58
2.2 Photometric image formation		netric image formation	60	
		2.2.1	Lighting	60
		2.2.2	Reflectance and shading	62
		2.2.3	Optics	68
	2.3	The dig	gital camera	73
		2.3.1	Sampling and aliasing	77
		2.3.2	Color	80
		2.3.3	Compression	90
	2.4	Additio	onal reading	93
	2.5	Exercis	ses	93

- 2D points:
- 2D lines:
- 2D conics:
- 3D points:
- 3D planes:
- 3D lines:

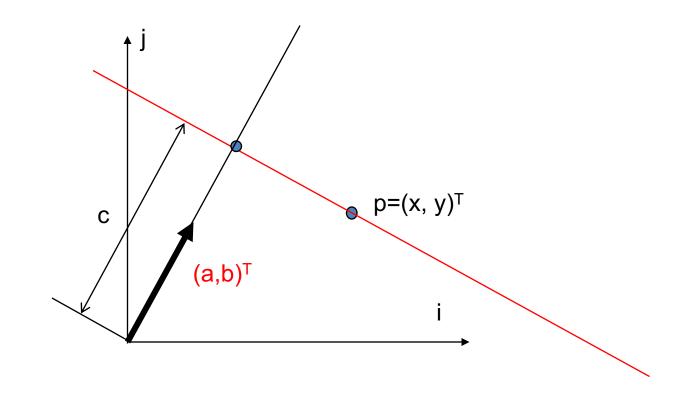
2D Coordinate Frames & Points

- 2D coordinates x and y
- Point p = (x, y)



2D Lines

- Line I = (*a*, *b*, *c*)
- Point p coincides with line iff ax + by = c



Homogeneous coordinates

Conversion

Converting to *homogeneous* coordinates

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

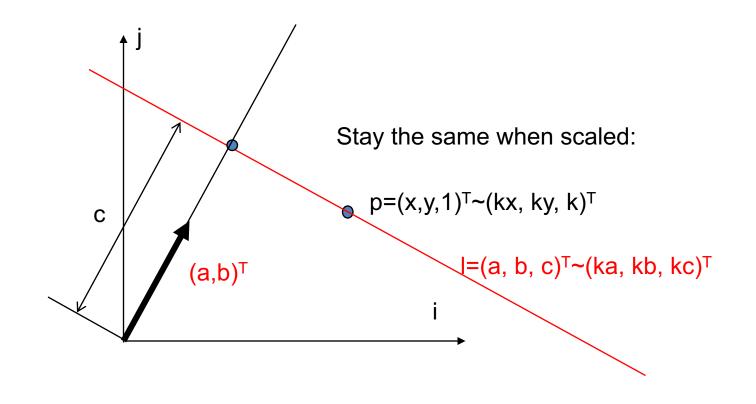
homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Homogeneous Coordinates

- Uniform treatment of points and lines
- Line-point incidence: |^Tp=0

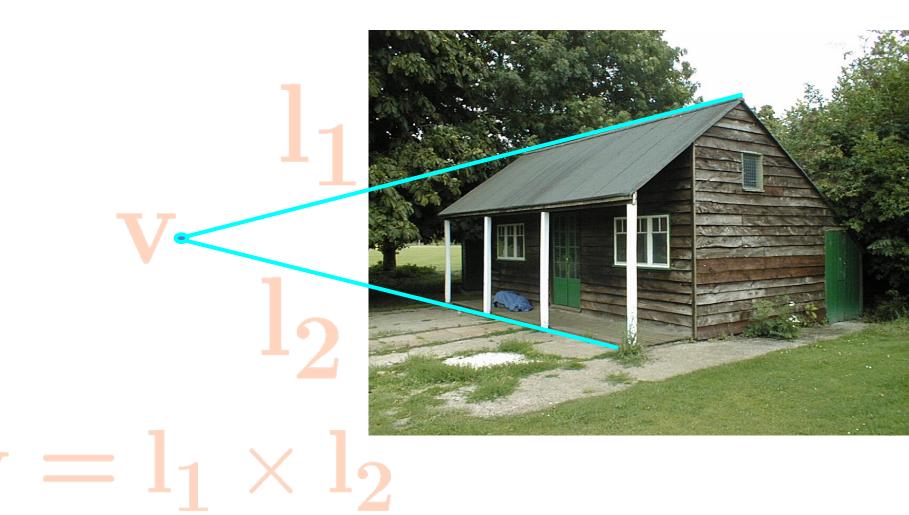


Join = cross product !

Join of two lines is a point:
 p=l₁ x l₂

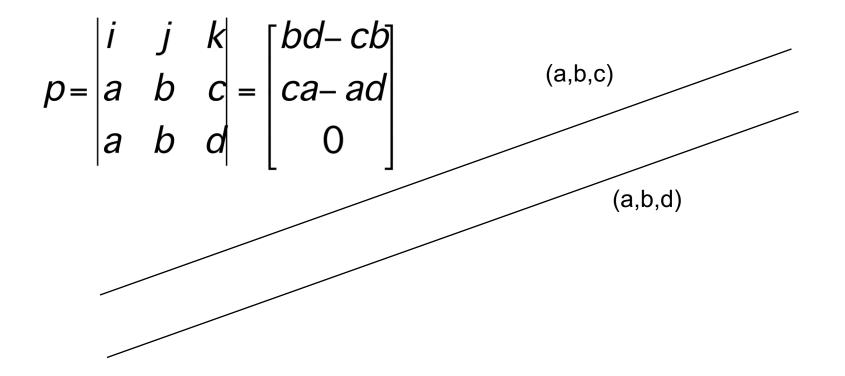
Join of two points is a line:
 I=p₁ x p₂

Automatic estimation of vanishing points and lines

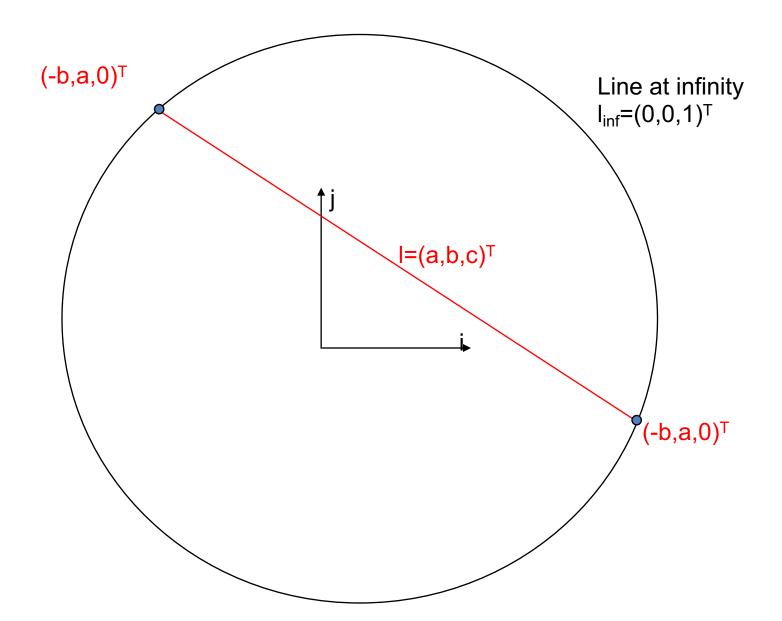


Joining two parallel lines ?

(a,b,c)



Points at Infinity !



homogeneous

- 2D points: (x,y), $\tilde{\boldsymbol{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{\boldsymbol{x}}$
- 2D lines: $\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}} = ax + by + c = 0$
- 2D conics:
- 3D points:
- 3D planes:
- 3D lines:

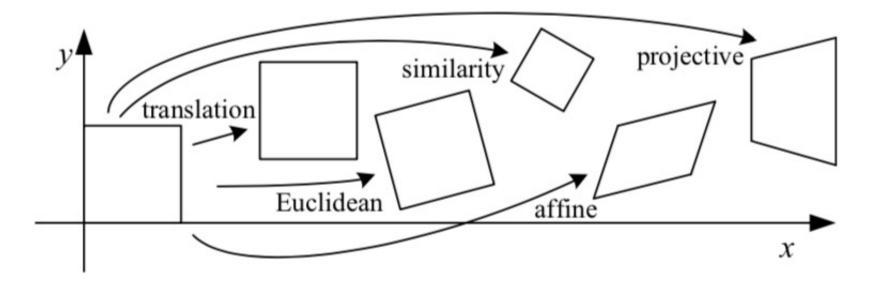
- 2D points: (x,y), $\tilde{\boldsymbol{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{\boldsymbol{x}}$
- 2D lines: $\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}} = ax + by + c = 0$
- 2D conics:
- 3D points: $oldsymbol{x}=(x,y,z)$ $\boldsymbol{ ilde{x}}=(ilde{x}, ilde{y}, ilde{z}, ilde{w})$
- 3D planes: $\bar{x} \cdot \tilde{m} = ax + by + cz + d = 0$
- 3D lines:

- 2D points: $(x, y), \ \tilde{x} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{x}$
- 2D lines: $\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}} = ax + by + c = 0$
- 2D conics: $\tilde{\boldsymbol{x}}^T \boldsymbol{Q} \tilde{\boldsymbol{x}} = 0$
- 3D points: $\boldsymbol{x} = (x, y, z)$ $\tilde{\boldsymbol{x}} = (\tilde{x}, \tilde{y}, \tilde{z}, \tilde{w})$
- 3D planes: $\bar{x} \cdot \tilde{m} = ax + by + cz + d = 0$
- 3D lines: $\boldsymbol{r} = (1 \lambda)\boldsymbol{p} + \lambda \boldsymbol{q}$

$$ilde{m{r}} = \mu m{ ilde{p}} + \lambda m{ ilde{q}} \ m{r} = m{p} + \lambda m{ ilde{d}}$$

See Chapter 2.1.1 for conics, quadrics, 3D lines

2.1.2: 2D Transformations



2.1.2: 2D Transformations

translation

rotation

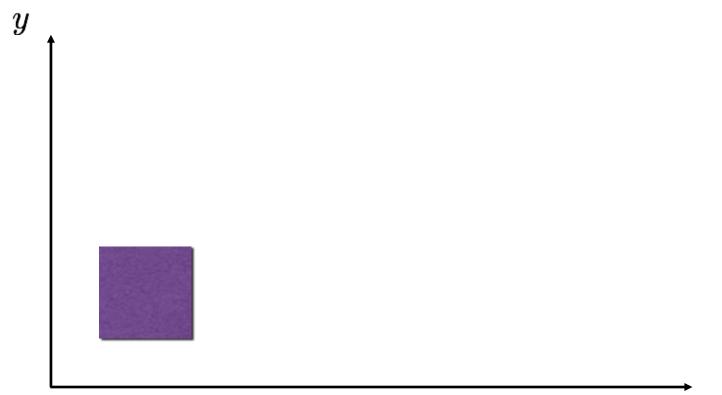

```
aspect
```

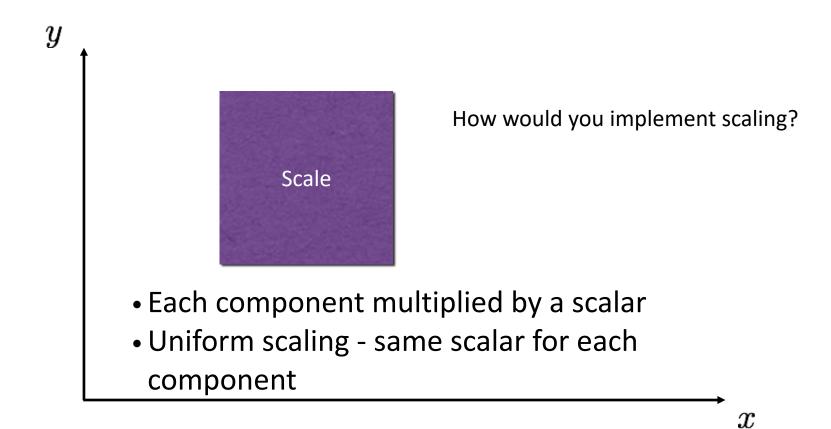

affine

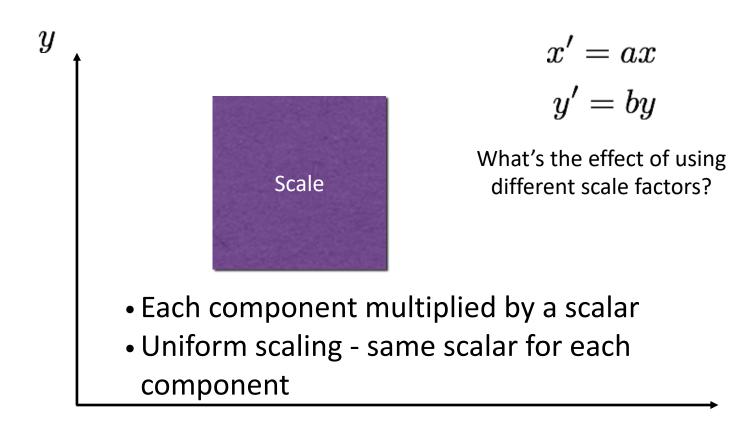
perspective

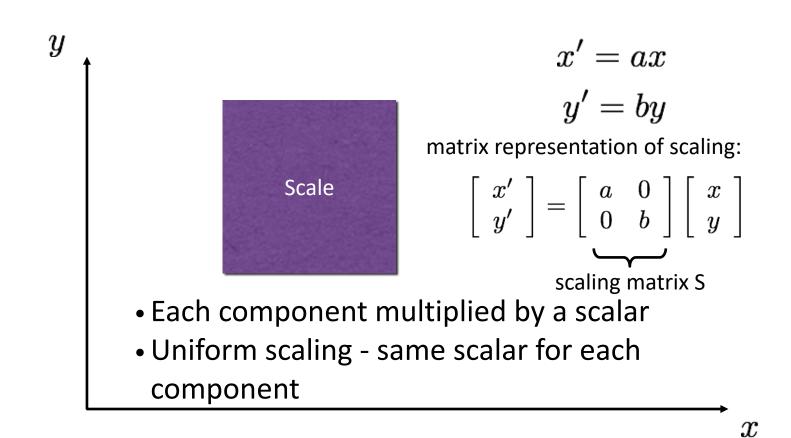
cylindrical

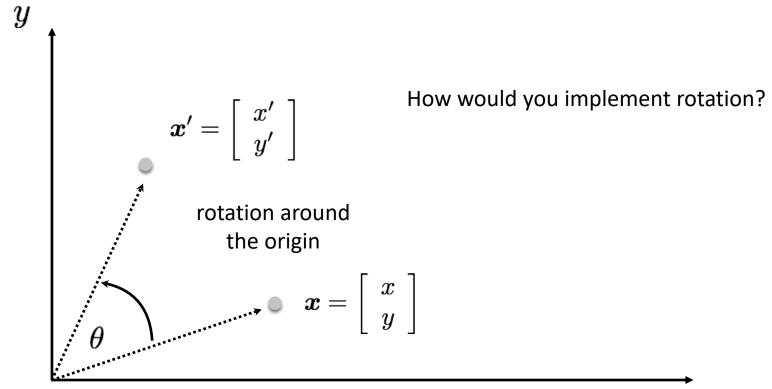
2D transformation slides adapted from CMU courses by Gkioulekas, Kitani



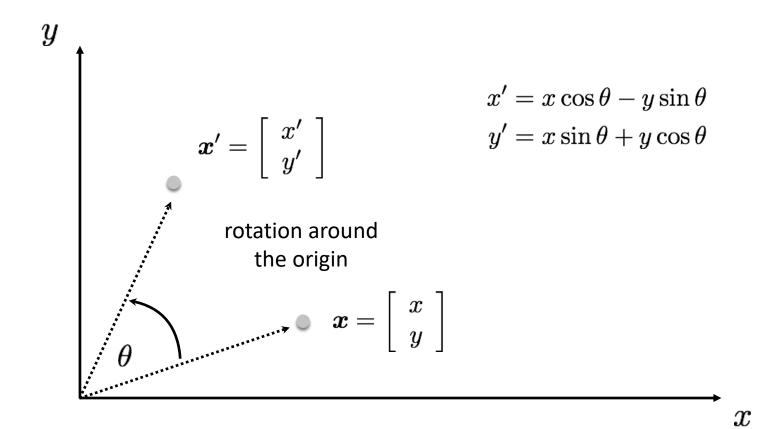


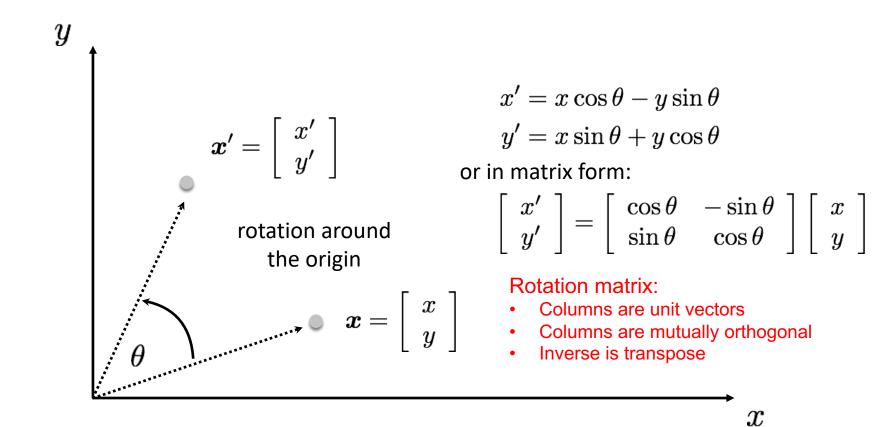






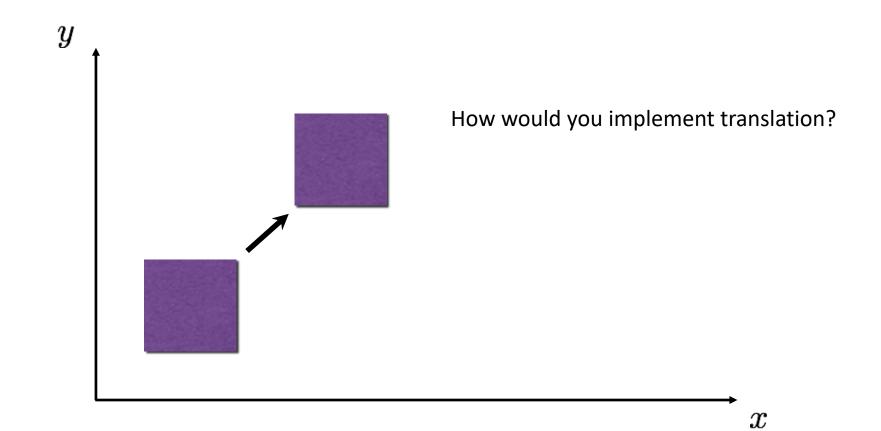
x

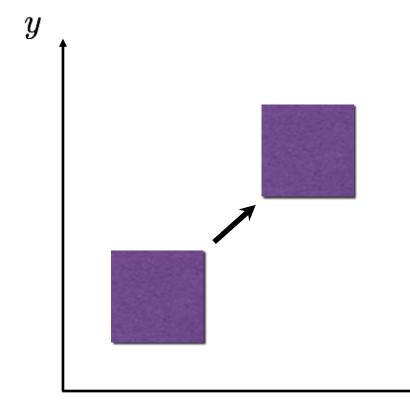




2D planar and linear transformations

Scale $\mathbf{M} = \left[egin{array}{cc} s_x & 0 \ 0 & s_y \end{array} ight]$	Flip across y $\mathbf{M} = \left[egin{array}{cc} -1 & 0 \ 0 & 1 \end{array} ight]$
Rotate	Flip across origin
$\mathbf{M} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$	$\mathbf{M}=\left[egin{array}{cc} -1 & 0 \ 0 & -1 \end{array} ight]$
Shear	Identity
$\mathbf{M}=\left[egin{array}{cc} 1 & s_x\ s_y & 1 \end{array} ight]$	$\mathbf{M}=\left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array} ight]$



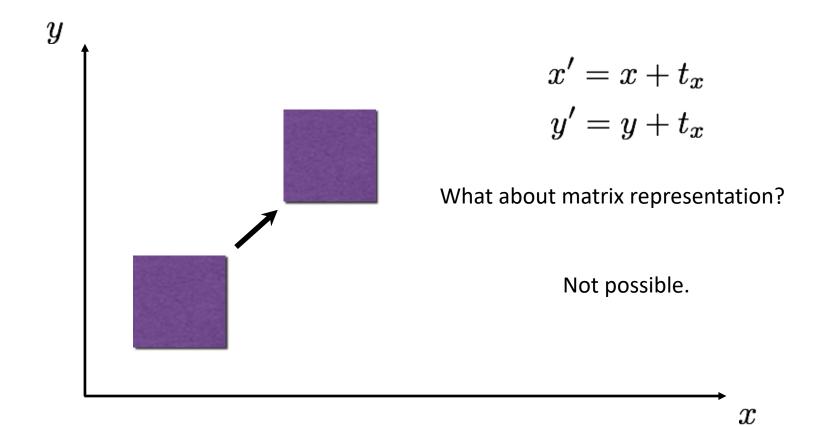


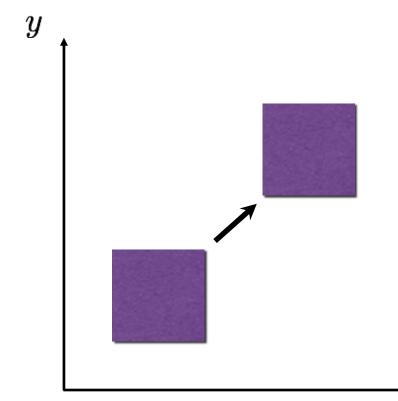
$$\begin{aligned} x' &= x + t_x \\ y' &= y + t_x \end{aligned}$$

What about matrix representation?

$$\mathbf{M} = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array} \right]$$

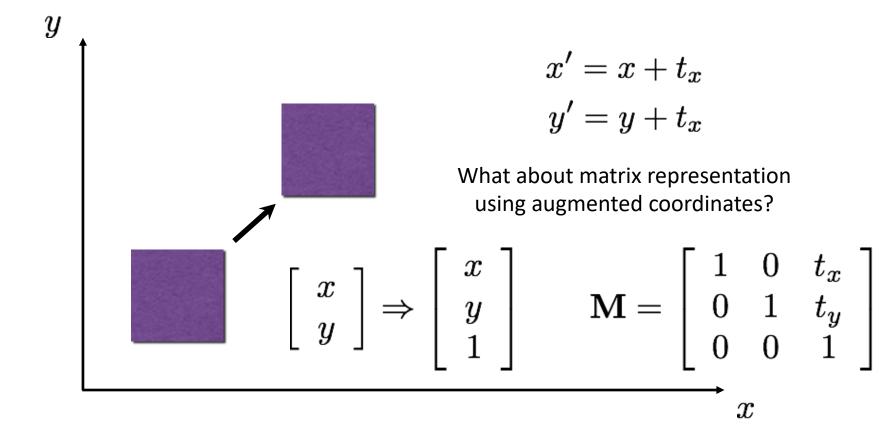
x



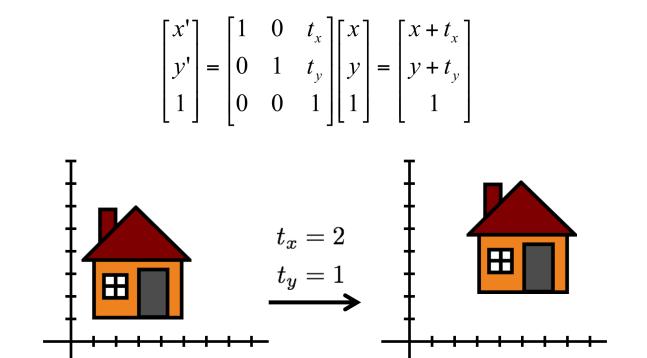


$$\begin{aligned} x' &= x + t_x \\ y' &= y + t_x \end{aligned}$$

What about matrix representation using homogenous coordinates?



2D translation using homogeneous coordinates



2D Transformations in homogeneous coordinates

Reminder: Homogeneous coordinates

Conversion:

 inhomogeneous → augmented/homogeneous

$$\left[\begin{array}{c} x\\ y\end{array}\right] \Rightarrow \left[\begin{array}{c} x\\ y\\ 1\end{array}\right]$$

- homogeneous \rightarrow inhomogeneous

$$\left[\begin{array}{c} x\\ y\\ w\end{array}\right] \Rightarrow \left[\begin{array}{c} x/w\\ y/w\end{array}\right]$$

• scale invariance

$$\begin{bmatrix} x & y & w \end{bmatrix}^{\top} = \lambda \begin{bmatrix} x & y & w \end{bmatrix}^{\top}$$

Special points:

• point at infinity

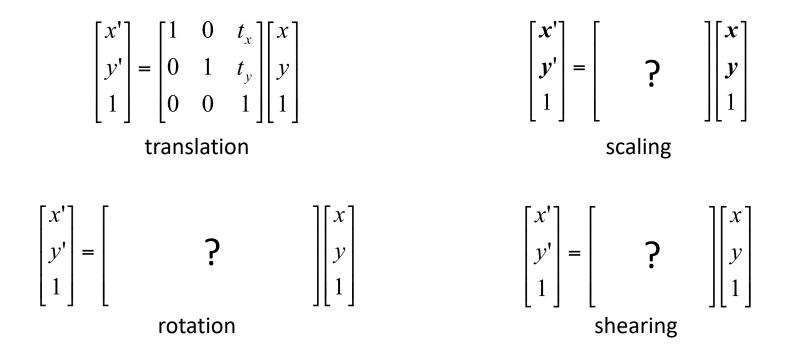
$$\left[egin{array}{ccc} x & y & 0 \end{array}
ight]$$

• undefined

$$\left[\begin{array}{ccc} 0 & 0 & 0 \end{array}\right]$$

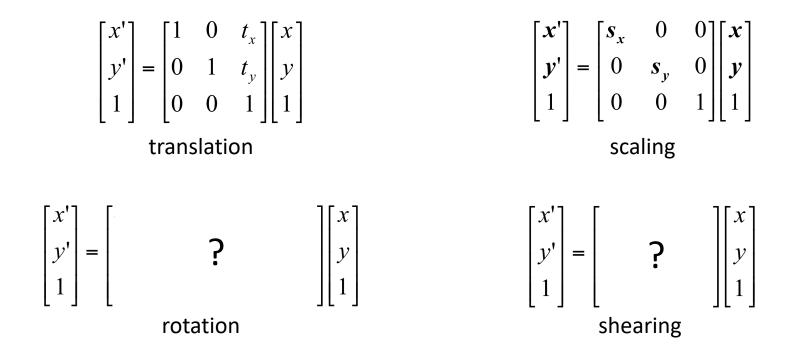
2D transformations

Re-write these transformations as 3x3 matrices:



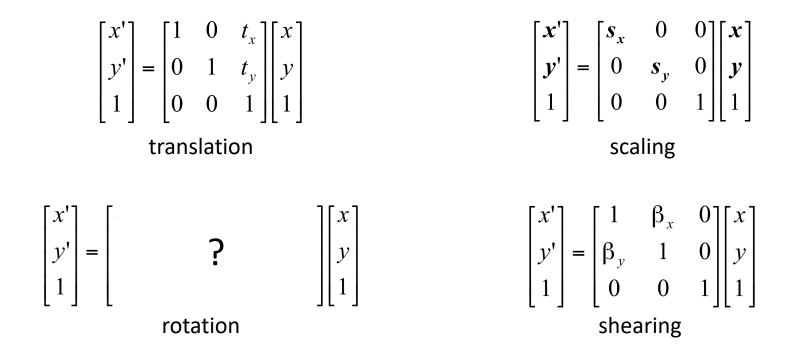
2D transformations

Re-write these transformations as 3x3 matrices:



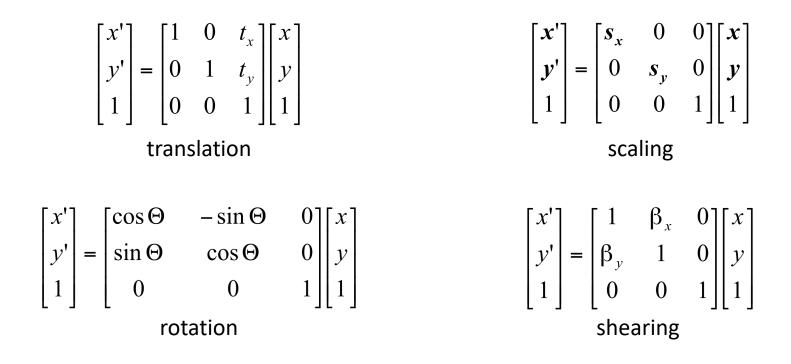
2D transformations

Re-write these transformations as 3x3 matrices:



2D transformations

Re-write these transformations as 3x3 matrices:



Matrix composition

Transformations can be combined by matrix multiplication:

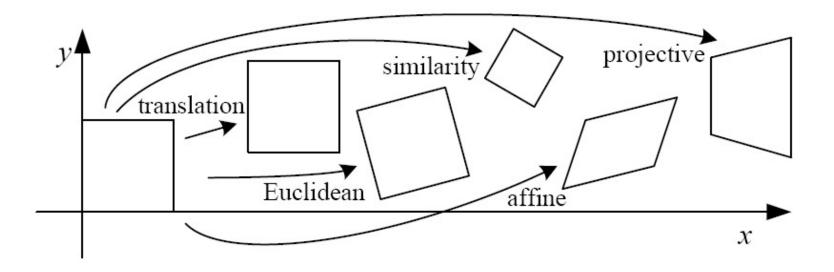
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ w \end{bmatrix}$$
$$\mathbf{p}' = ? ? ? P$$

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx\\0 & 1 & ty\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0\\\sin\Theta & \cos\Theta & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0\\0 & sy & 0\\0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x\\y\\w \end{bmatrix}$$
$$\mathbf{p}' = \text{translation}(\mathbf{t}_{x},\mathbf{t}_{y}) \qquad \text{rotation}(\theta) \qquad \text{scale}(s,s) \quad \mathbf{p}$$

Does the multiplication order matter?



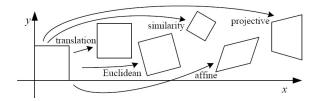
Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$?
similarity	$\left[\begin{array}{c c} s R & t \end{array} \right]$?
affine	$\begin{bmatrix} A \end{bmatrix}$?
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]$?

Translation

Translation:

$$\left[\begin{array}{rrrr} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{array}\right]$$

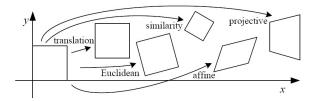
How many degrees of freedom?



Euclidean/Rigid

Euclidean (rigid): rotation + translation $\begin{bmatrix} \cos\theta & -\sin\theta & r_3 \\ \sin\theta & \cos\theta & r_6 \\ 0 & 0 & 1 \end{bmatrix}$

How many degrees of freedom?

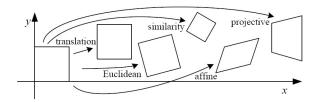


Affine

Affine transform: uniform scaling + shearing + rotation + translation

$$\left[\begin{array}{rrrrr} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{array}\right]$$

Are there any values that are related?



Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations
- + translations

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms

Does the last coordinate w ever change?

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1\end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

Projective transformations

Projective transformations are combinations of

- affine transformations;
- + projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

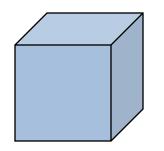
8 DOF: vectors (and therefore matrices) are defined up to scale)

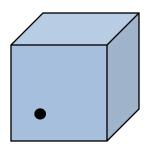
Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$?
similarity	$\left[\begin{array}{c c} s R & t \end{array} \right]$?
affine	$\begin{bmatrix} A \end{bmatrix}$?
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]$?

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$	2
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]$	3
similarity	$\left[\begin{array}{c c} s R & t \end{array} \right]$	4
affine	$\begin{bmatrix} A \end{bmatrix}$	6
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]$	8

2.1.3: 3D Transformations

- Need a way to specify the six degrees-of-freedom of a rigid body.
- Why are there 6 DOF?





A rigid body is a collection of points whose positions relative to each other can't change

Fix one point, three DOF

Fix second point, two more DOF (must maintain distance constraint)

Third point adds one more DOF, for rotation around line

Notations

- Superscript references coordinate frame
- ^AP is coordinates of P in frame A
- ^BP is coordinates of P in frame B
- Example :

$$k_{A} \qquad ^{A}P = \begin{pmatrix} ^{A}x \\ ^{A}y \\ ^{A}z \end{pmatrix} \Leftrightarrow \overline{OP} = \begin{pmatrix} ^{A}x \bullet \overline{i_{A}} \end{pmatrix} + \begin{pmatrix} ^{A}y \bullet \overline{j_{A}} \end{pmatrix} + \begin{pmatrix} ^{A}z \bullet \overline{k_{A}} \end{pmatrix}$$

Translation

• Using augmented/homogeneous coordinates, translation is expressed as a matrix multiplication. ${}^{B}P = {}^{A}P + {}^{B}O_{A}$

$$\begin{bmatrix} {}^{B}P\\1 \end{bmatrix} = \begin{bmatrix} I & {}^{B}O_{A}\\0 & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P\\1 \end{bmatrix}$$

• Translation is commutative

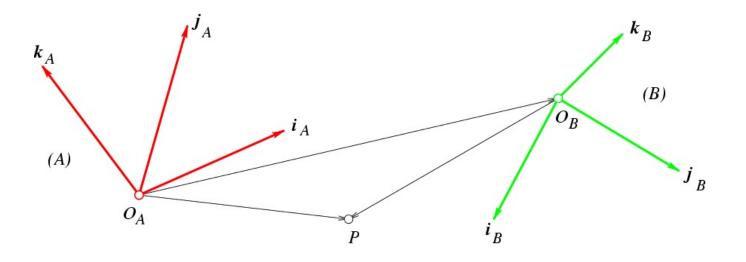
Rotation in homogeneous coordinates

• Using homogeneous coordinates, rotation can be expressed as a matrix multiplication.

$${}^{B}P = {}^{B}_{A}R^{A}P$$
$${}^{B}P = {}^{B}_{A}R^{A}O \\ 1 = {}^{B}_{A}R^{A}O \\ 0 & 1 \end{bmatrix} {}^{A}P \\ 1 = {}^{A}P \\ 1 = {}^{B}_{A}R^{A}O \\ 0 & 1 \end{bmatrix} {}^{A}P \\ 1 = {}^{A}P \\ 1 = {}^{B}_{A}R^{A}O \\ 0 & 1 = {}^{A}P \\ 1 = {}^{B}_{A}R^{A}O \\ 0 = {}^{B}_{A}P^{A}O \\ 1 = {}^{B}_{A}R^{A}O \\ 1 = {}^{B}_{A}O \\ 1 = {}^{B}_{$$

- R is a rotation matrix:
 - Columns are unit vectors
 - Columns are mutually orthogonal
 - Inverse is transpose
- Rotation is not commutative

3D Rigid transformations



 ${}^{B}P = {}^{B}_{A}R^{A}P + {}^{B}O_{A}$

3D Rigid transformations

• Unified treatment using homogeneous coordinates.

$$\begin{bmatrix} {}^{B}P\\1 \end{bmatrix} = \begin{bmatrix} 1 & {}^{B}O_{A}\\0 & 1 \end{bmatrix} \begin{bmatrix} {}^{B}R & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P\\1 \end{bmatrix}$$
$$= \begin{bmatrix} {}^{B}R & {}^{B}O_{A}\\0^{T} & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P\\1 \end{bmatrix}$$
$$\longrightarrow \qquad \begin{bmatrix} {}^{B}P\\1 \end{bmatrix} = {}^{B}AT \begin{bmatrix} {}^{A}P\\1 \end{bmatrix}$$

Hierarchy of 3D Transforms

- Subgroup Structure:
 - Translation (? DOF)
 - Rigid 3D (? DOF)
 - Affine (? DOF)
 - Projective (? DOF)

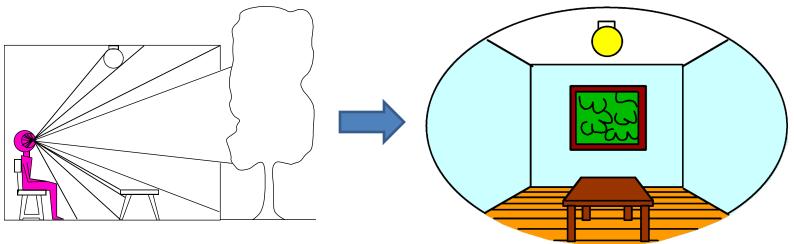
Hierarchy of 3D Transforms

- Subgroup Structure:
 - Translation (3 DOF)
 - Rigid 3D (6 DOF)
 - Affine (12 DOF)
 - Projective (15 DOF)

2.1.5: 3D to 2D: Projection

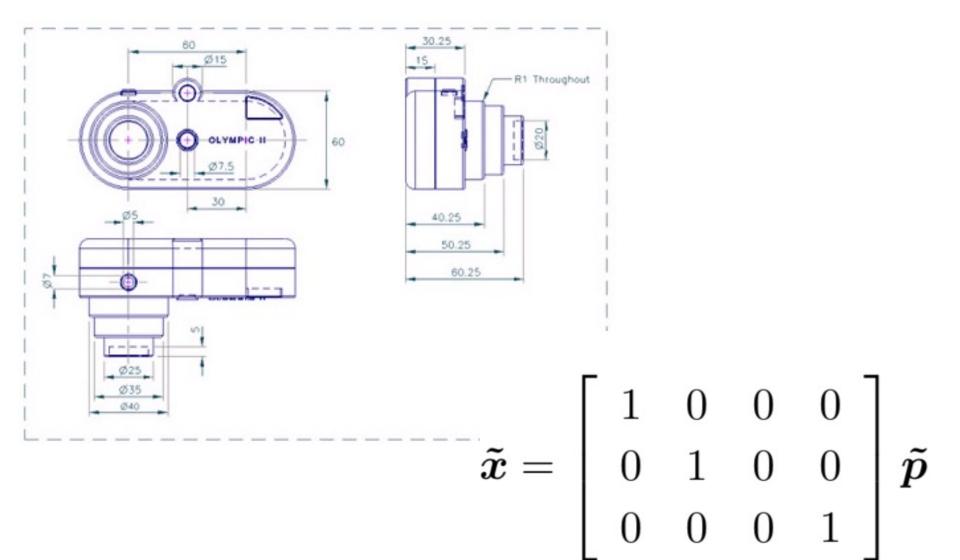
3D world

2D image

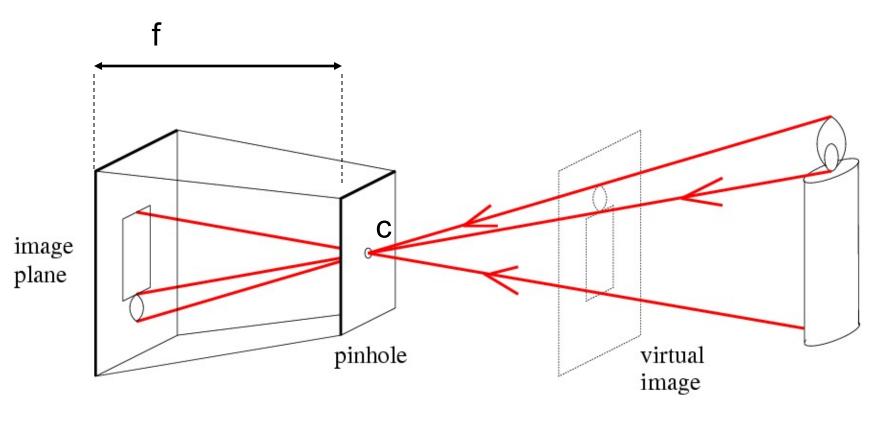


Point of observation

Orthographic Projection



Pinhole camera



f = focal length c = center of the camera

Figure from Forsyth

Pre-history: the Camera obscura

• Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

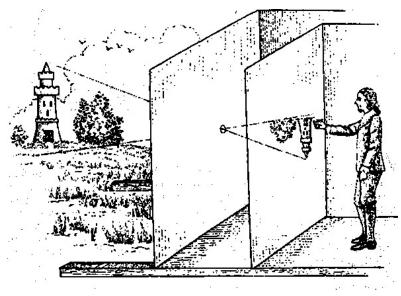
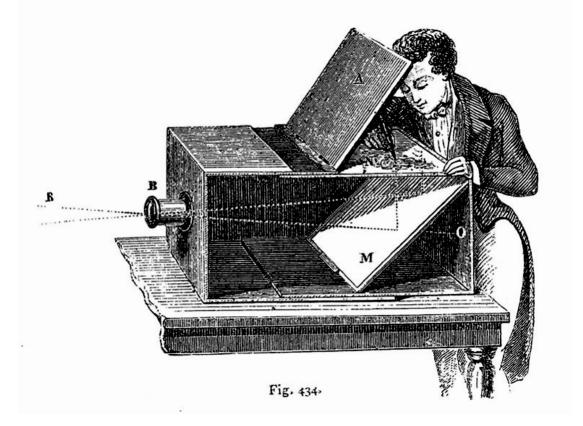


Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing



Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

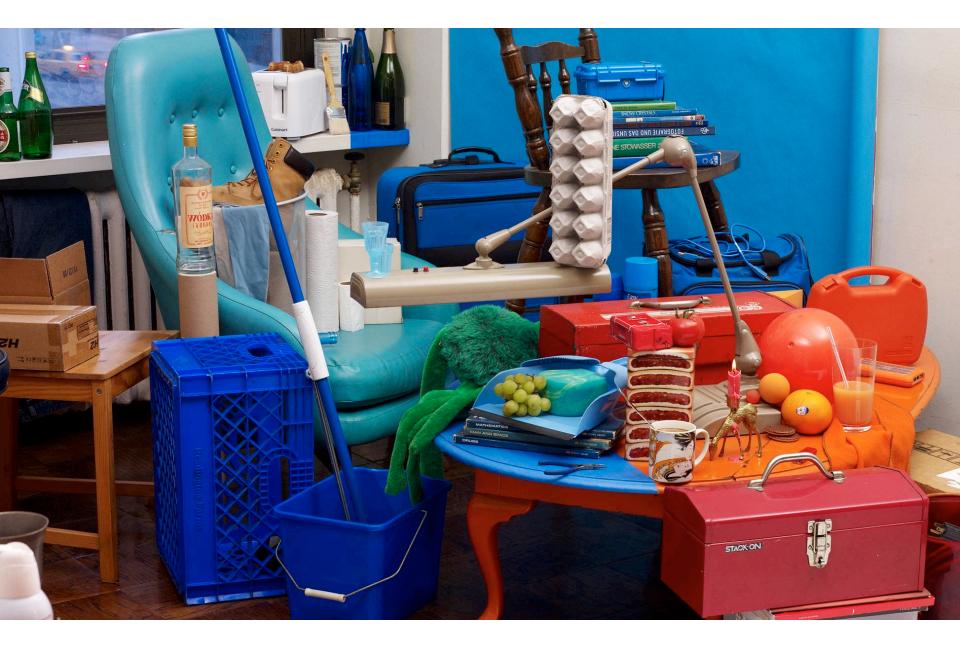
Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Slide source: Seitz

Projection can be tricky...

Slide source: Seitz

Projection can be tricky...



Camera and World Geometry

How tall is this woman?

How high is the camera?

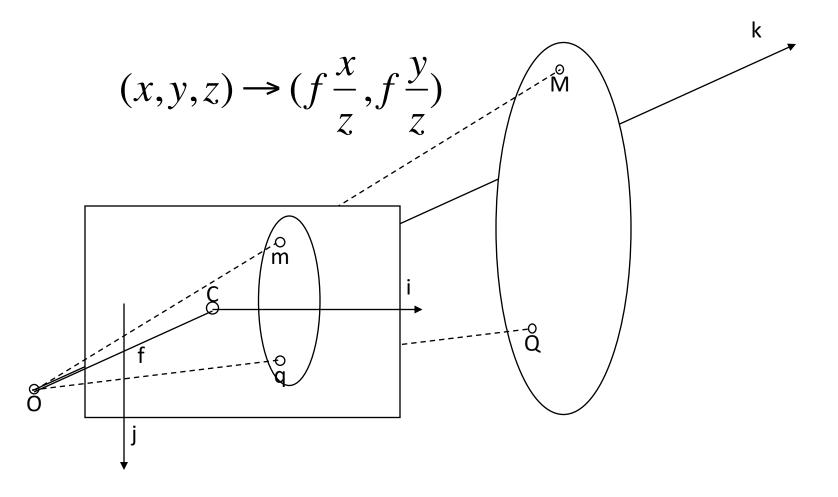
What is the camera rotation?

What is the focal length of the camera?

Which ball is closer?

Pinhole Camera

• Fundamental equation:



Homogeneous Coordinates

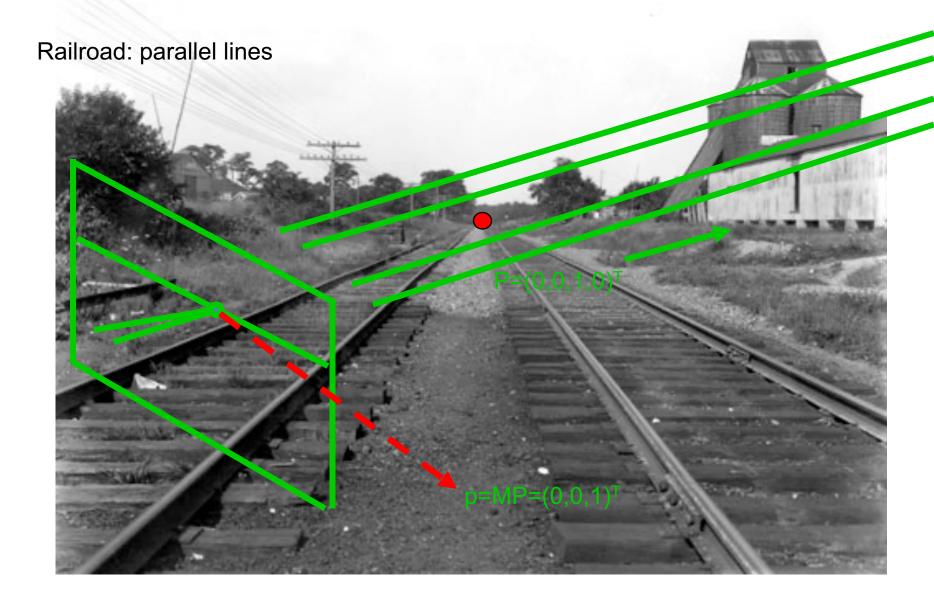
Linear transformation of homogeneous (projective) coordinates

$$m = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix} M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ T \end{bmatrix}$$

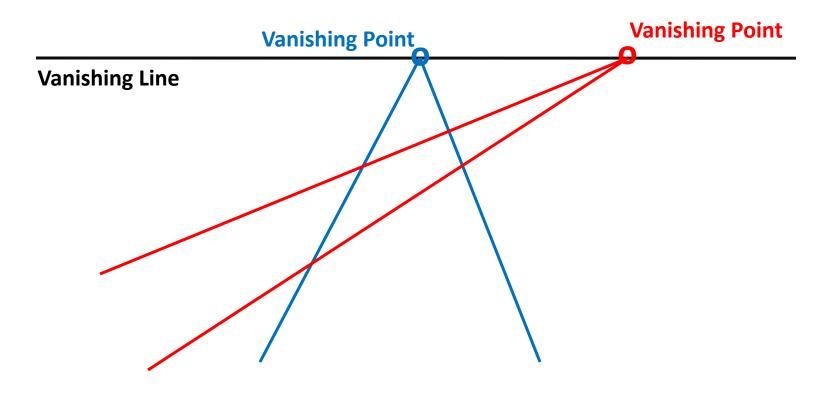
Recover image (Euclidean) coordinates by normalizing:

$$\hat{u} = \frac{u}{w} = \frac{X}{Z}$$
$$\hat{v} = \frac{v}{w} = \frac{Y}{Z}$$

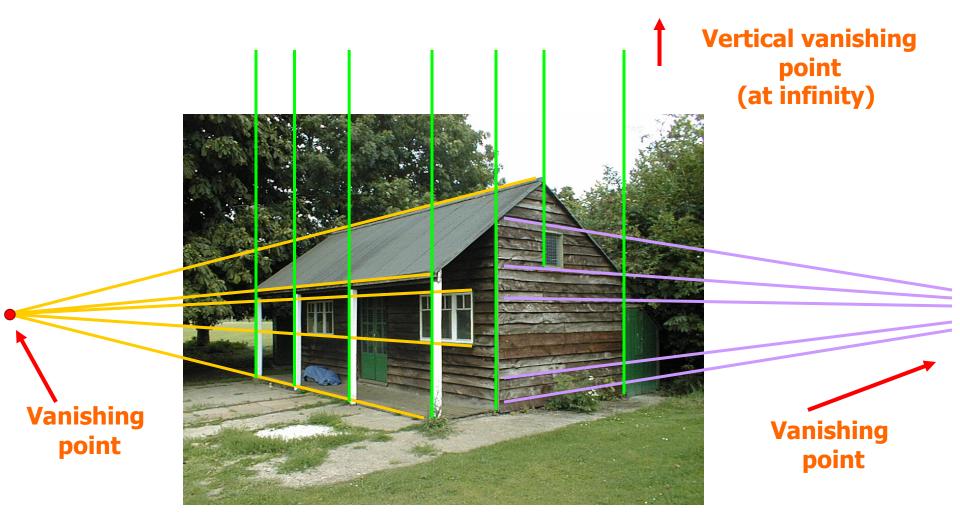
We can see infinity !

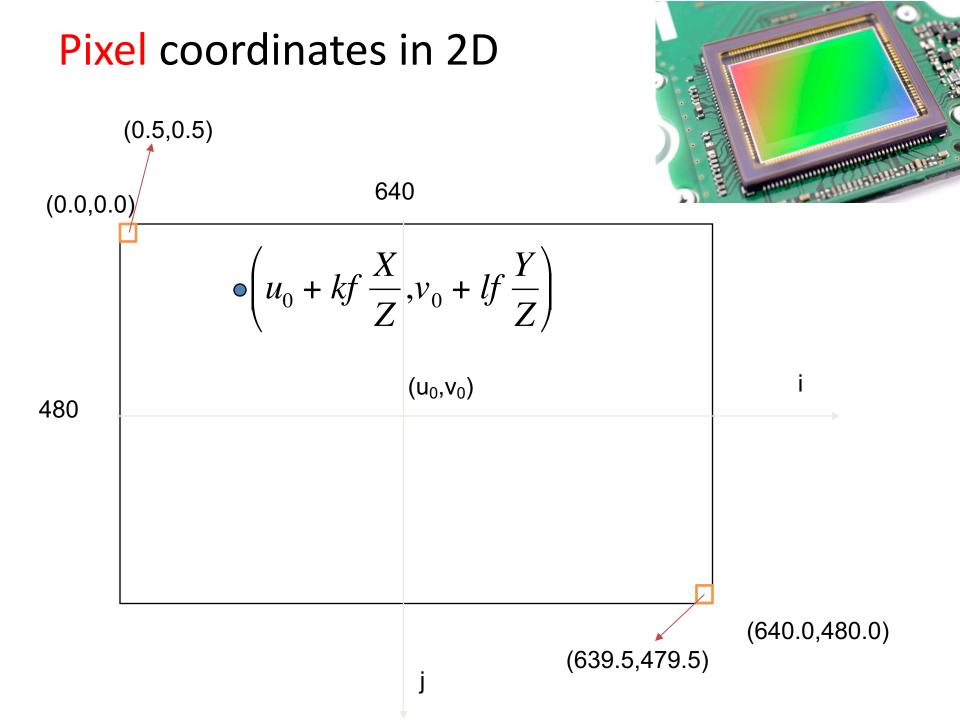


Vanishing points and lines



Vanishing points and lines





Intrinsic Calibration

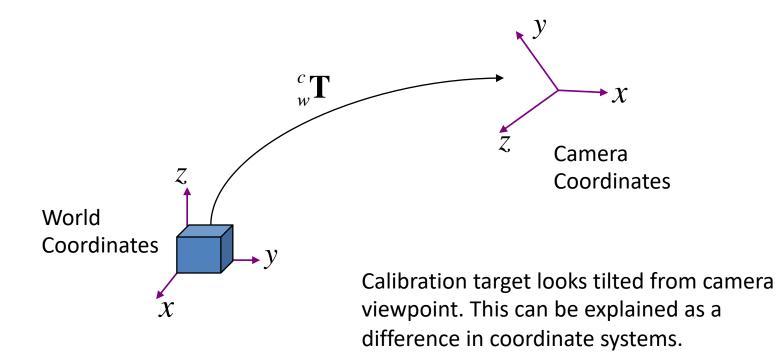
 3×3 Calibration Matrix K

$$m = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = K[I \quad 0]M = \begin{bmatrix} \alpha & s & u_0 \\ \beta & v_0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ Y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ T \end{bmatrix}$$

Recover image (Euclidean) coordinates by normalizing : $\frac{\mu}{2} = \frac{\alpha V + \alpha V}{2}$

Camera Pose

In order to apply the camera model, objects in the scene must be expressed in *camera coordinates*.



Projective Camera Matrix

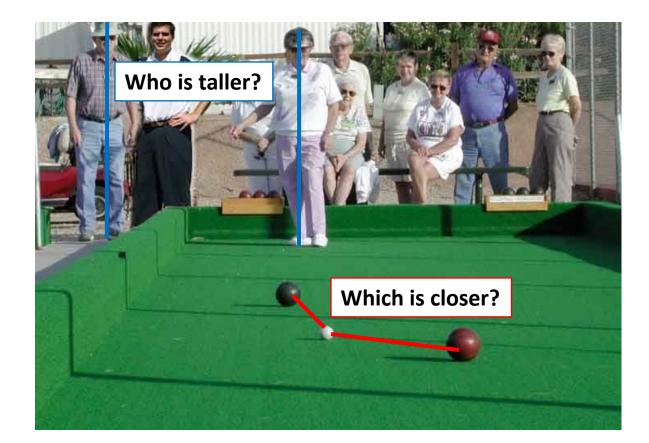
$$\begin{aligned} Camera &= Calibration \times \operatorname{Pr}ojection \times Extrinsics \\ m &= \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ \beta & v_0 \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ T \end{bmatrix} \\ &= K \begin{bmatrix} R & t \end{bmatrix} M = PM \end{aligned}$$

5+6 DOF = 11 !

Projective Geometry

What is lost?

• Length



Length and area are not preserved

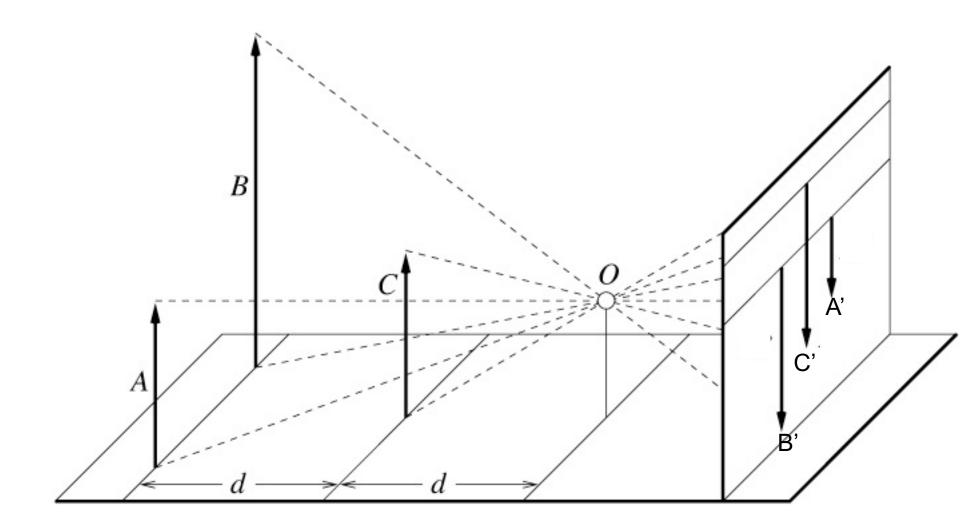
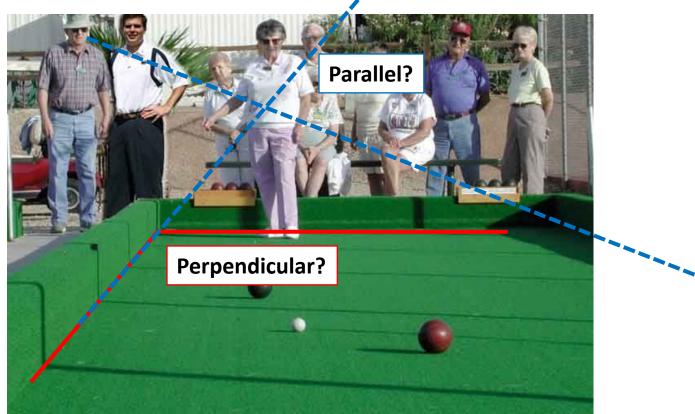


Figure by David Forsyth

Projective Geometry

What is lost?

- Length
- Angles



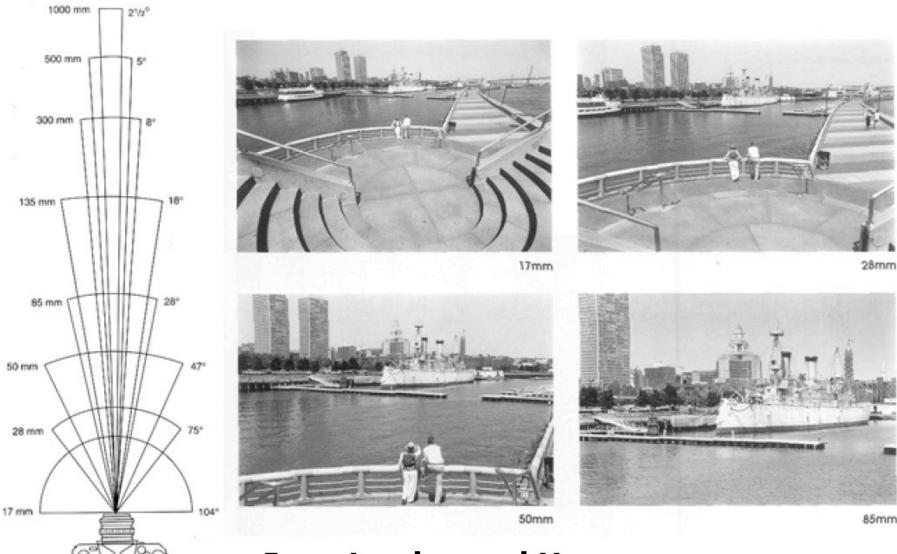
Projective Geometry

What is preserved?

• Straight lines are still straight

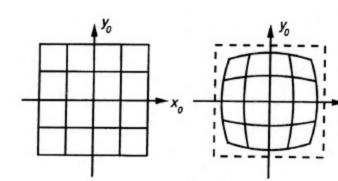


Field of View (Zoom, focal length)



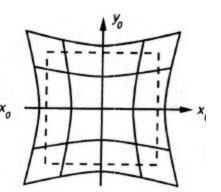
From London and Upton

2.1.6 Radial Distortion



No Distortion

Barrel Distortion



Pincushion Distortion

Corrected Barrel Distortion