
Manipulator Kinematics

Frank Dellaert
Center for Robotics and Intelligent Machines

Georgia Institute of Technology

February 6, 2020

Contents

1 Introduction 3

2 Planar Geometry 3
2.1 Planar Rotations aka SO(2) . 3
2.2 2D Rigid Transforms aka SE(2) 6
2.3 Exercise . 10

3 Serial Link Manipulators 11
3.1 Exercise . 12

4 Forward Kinematics 12
4.1 Exercise . 12

5 Describing Serial Manipulators 13
5.1 Exercise . 14

6 Product of Exponentials 14
6.1 Product of Conjugations . 14
6.2 2D Unit Twists . 15
6.3 Example . 16
6.4 General Case . 18
6.5 Exercise . 18

7 Three-dimensional Geometry 19
7.1 Rotations in 3D aka SO(3) . 19
7.2 3D Rigid transforms aka SE(3) 20
7.3 Exercise . 22

1

8 Spatial Manipulators 23
8.1 Kinematic Chains in Three Dimensions 23
8.2 Denavit-Hartenberg Conventions 23
8.3 Product of Exponentials in 3D 24
8.4 Detailed Example: The Pincher Robot 25
8.5 Exercise . 27

A Appendix: Geometry Reference 28
A.1 Planar Rotations aka SO(2) . 28
A.2 Rotations in 3D aka SO(3) . 28
A.3 2D Rigid Transforms aka SE(2) 29
A.4 3D Rigid transforms aka SE(3) 29
A.5 Unit twists . 30

2

1 Introduction

After an introduction to the necessary concepts from geometry, I start with simple
planar manipulators with only revolute joints. This allows us to develop intuition
for how forward kinematics can be implemented by concatenating a chain of rigid
transforms. I then show how using exponential maps of differential twists, while
an advanced concept, make describing robot arms more convenient. After that, it
is a simple matter to generalize everything to 3D and include prismatic joints.

Please also see the texts by Murray, Li, and Sastry [3]and Lynch and Park [?].

2 Planar Geometry

We start off by defining and giving some intuitions for geometry in the plane.

2.1 Planar Rotations aka SO(2)

I spend a lot of time on 2D rotations below, but bear with it! It is the simplest
space to think in, and we can get the most essential concepts across, which will
then generalize elegantly to the other transformation groups.

Basic Facts

A point P b in a rotated coordinate frame B can be expressed in a reference frame
S by multiplying with a 2⇥ 2 orthonormal rotation matrix R

s
b ,

p
s = R

s
bp

b

where the indices on R
s
b indicate the source and destination frames. The set of 2⇥2

rotation matrices, with matrix multiplication as the composition operator, form a
commutative group called the Special Orthogonal group SO(2). This means it
satisfies the following properties, for all R,R1, R2, R3 2 SO(2):

1. Closed: R1R2 2 SO(2).

2. Identity: I2R = R = RI2 with I2 the 2⇥ 2 identity matrix.

3. Inverse: RR
�1 = I2 = R

�1
R. Note that R�1 = R

T .

4. Associativity: (R1R2)R3 = R1 (R2R3).

5. Commutativity: R1R2 = R2R1.

3

In fact, the 2D rotation matrices form a 1-dimensional subgroup of the general
linear group of 2⇥ 2 invertible matrices GL(2), i.e., SO(2) ⇢ GL(2). Informally,
SO(2) is also a manifold, because it is a smooth continuous subset of the 2 ⇥ 2
matrices. We say it is a 1-D manifold in the 4-dimensional ambient space of 2⇥ 2
matrices. It is clear why this is so: the matrix is constrained to be orthonormal,
which provides three non-redundant constraints on its four entries.

However, this is not quite enough to fully define the manifold, as rotations
composed with a reflection also satisfy those constraints: together, they form the
orthogonal group O(2). The “S” in SO(2) picks one of the two connected com-
ponents of the O(2) manifold, namely those orthonormal matrices that have unit
determinant, i.e., |R| = 1.

Finally, since SO(2) is both a group and a manifold, we call it - informally,
again - a 1-dimensional Lie group. An essential property of Lie groups is that the
group operation is smooth, i.e., a small change to either R1 or R2 yields a small
change in their product R1R2. Similarly, the group action of SO(2) on a 2D point
p 2 R2 is also smooth: a small change in R will yield a small change in Rp.

Intuitions

Loosely following [3, p. 51], let us consider the curve R
s
b(t) describing the tra-

jectory of a rotating body B in the base frame S, the spatial coordinate frame.
Hence, a point P b in the body coordinate frame B describes the following trajec-
tory in spatial coordinates:

p
s(t) = R

s
b(t)p

b

Something that we intuitively know is that the point ps(t) describes a circular tra-
jectory around the origin. In addition, the further from the origin the faster the point
moves, and the velocity vector v

s(t) is always orthogonal to the vector ps(t). In-
deed, I show below that the velocity vector is given by

v
s(t) = !(t) [ps(t)]? (2.1)

where I introduce the notation p
? to mean the orthogonalization of a vector, i.e.,


x

y

�?
�
=


�y

x

�
,

and !(t) is the 1-dimensional, time-varying angular velocity. The time-function
!(t) completely describes the motion of the rotating body, and (2.1) does capture
our intuition about the instantaneous velocity of a point on a circular trajectory.

4

Proof. The velocity of the point ps(t) at time t in the spatial coordinate frame is

v
s(t) =

d

dt
p
s(t) = Ṙ

s
b(t)p

b

We know that we want to end up with an expression involving p
s(t), so let us

substitute the fixed p
b by the time varying quantity

p
b = (Rs

b(t))
�1

p
s(t)

which yields a map from spatial coordinates ps(t) to spatial velocity:

v
s(t) = Ṙ

s
b(t) (R

s
b(t))

�1
p
s(t)

One can easily prove that the matrix

!̂(t)
�
= Ṙ

s
b(t) (R

s
b(t))

�1 (2.2)

is skew-symmetric, and hence can be written as

!̂(t)
�
=


0 �!(t)

!(t) 0

�
= !(t)


0 �1
1 0

�
,

where we defined the hat operator ^ that maps a scalar to a 2⇥2 skew-symmetric
matrix. Finally, note that


0 �1
1 0

� 
x

y

�
=


�y

x

�
=


x

y

�?
,

and hence
v
s(t) = !̂(t)ps(t) = !(t) [ps(t)]? (2.3)

The skew-symmetric matrices of the form

!̂
�
=


0 �!

! 0

�

form a vector space and are elements of the Lie algebra so(2) associated with
SO(2), and hence can be added together, multiplied with a scalar, etc. To extract
the angular velocity from an so(2) element we can define the vee operator:


0 �!

! 0

�_
�
= !

Hence, so(2) is isomorphic to the vector space R.

5

The Exponential Map

Can we get a closed form solution for ps(t) if the angular velocity ! is constant?
Again following [3, p. 27], from the definition of vs(t) and Equation 2.3, we get
the following expression in the spatial coordinates ps(t):

d

dt
p
s(t) = !̂p

s(t).

This is a time-invariant differential equation, yielding the solution

p
s(t) = exp(!̂t)ps(0)

where exp(!̂t) is the matrix exponential, defined by the familiar series

exp(✓̂)
�
= I + ✓̂ +

✓̂
2

2!
+

✓̂
3

3!
+ . . .

Now, if we define ✓
�
= !t, because

✓̂
2 =


0 �✓

✓ 0

� 
0 �✓

✓ 0

�
= ✓

2


�1 0
0 �1

�

✓̂
3 = ✓

2


�1 0
0 �1

� 
0 �✓

✓ 0

�
= ✓

3


0 1
�1 0

�

etc., we can recognize the even and odd series for cos and sin, respectively, yielding

exp(!̂t)
�
=

"
I � ✓2

2! + . . . �✓ + ✓3

3! . . .

✓ � ✓3

3! . . . I � ✓2

2! + . . .

#
=


cos ✓ � sin ✓
sin ✓ cos ✓

�

Hence, to no great surprise, we find that the spatial coordinates trace out a circle:

p
s(t) =


cos!t � sin!t
sin!t cos!t

�
p
s(0)

2.2 2D Rigid Transforms aka SE(2)

Basic Facts

In robot manipulators, the pose of the end-effector or tool is computed by concate-
nating several rigid transforms. Let pb be the 2D coordinates of a point in the frame

6

B, and p
s the coordinates of the same point in a base frame S. We can transform p

b

to p
s by a 2D rigid transform T

s
b , which is a rotation followed by a 2D translation,

p
s = T

s
b ⌦ p

b �
= R

s
bp

b + t
s
b

with T
s
b

�
= (Rs

b, t
s
b), where R

s
b 2 SO(2) and t

s
b 2 R2. In all of the above, a

subscript B indicates the frame we are transforming from, and the superscript S
indicates the frame we are transforming to. In well-formed equations, subscripts
on one symbol match the superscript of the next symbol.

The set of 2D rigid transforms forms a group, where the group operation cor-
responding to composition of two rigid 2D transforms is defined as

T
t
s = T

t
s � T

s
b =

�
R

t
s, t

t
s

�
� (Rs

b, t
s
b)

�
=
�
R

t
sR

s
b, R

t
st

s
b + t

t
s

�
(2.4)

The group of rotation-translation pairs T with this group operation is called the
special Euclidean group SE(2). It has an identity element e = (I, 0), and the
inverse of a transform T = (R, t) is given by T

�1 = (RT
,�R

T
t).

2D rigid transforms can be viewed as a subgroup of a general linear group of
degree 3, i.e., SE(2) ⇢ GL(3). This can be done by embedding the rotation and
translation into a 3⇥ 3 invertible matrix defined as

T
s
b =


R

s
b t

s
b

0 1

�

With this embedding you can verify that matrix multiplication implements compo-
sition, as in Equation 2.4:

T
t
sT

s
b =


R

t
s t

t
s

0 1

� 
R

s
b t

s
b

0 1

�
=


R

t
sR

s
b R

t
st

s
b + t

t
s

0 1

�
= T

t
b

By similarly embedding 2D points in a three-vector, the so-called homogeneous
coordinates of the 2D vector, a 2D rigid transform acting on a point can be imple-
mented by matrix-vector multiplication:


R

s
b t

s
b

0 1

� 
p
b

1

�
=


R

s
bp

b + t
s
b

1

�

In what follows we will work with these transform matrices exclusively.

Intuitions

The intuition for rigid transforms in the plane stems from the following not-so-
obvious theorem:

7

Theorem. Every 2D rigid transform can be expressed as a rotation around a point,
possibly at infinity (in which case it is a pure translation).

Consider the trajectory traced out by spatial coordinates of a point pb on a
rigidly moving body, expressed in homogeneous coordinates:


p
s(t)
1

�
= T

s
b (t)


p
b

1

�
.

Then the theorem says that at any given moment the velocity vector vs(t) of the
point must be consistent with a rotational trajectory around some instantaneous
center of rotation (ICR) qs(t), i.e.,

v
s(t) = !(t) [ps(t)� q

s(t)]? (2.5)

where !(t) is again the angular velocity over time. Rather than proving this, let us
rewrite this to derive an equivalent hat operator for SE(2):

v
s(t) = !(t) [ps(t)� q

s(t)]?

= !̂(t) [ps(t)� q
s(t)]

= !̂(t)ps(t)� !̂(t)qs(t)

Recognizing that
v(t)

�
= �!̂(t)qs(t) = �!(t) [qs(t)]?

is the instantaneous velocity of the origin, we can write

v
s(t)
0

�
=


!̂(t)ps(t) + v(t)

0

�
=


!̂(t) v(t)
0 0

� 
p
s(t)
1

�
(2.6)

The 3⇥ 3 matrices of the form


!̂ v

0 0

�
=

2

4
0 �! vx

! 0 vy

0 0 0

3

5

are elements of the Lie algebra se(2) associated with SE(2).
Compare (2.6) above with Equation 2.3 for rotations. The pattern that emerges

is that elements of the Lie algebra map spatial coordinates to spatial velocity,
although we have to use homogeneous coordinates for SE(2). Spelled out in full,
we obtain

2

4
v
s
x

v
s
y

0

3

5 =

2

4
0 �! vx

! 0 vy

0 0 0

3

5

2

4
p
s
x

p
s
y

1

3

5 =

2

4
�!p

s
y + vx

!p
s
x + vy

0

3

5

8

We define a 2D differential twist V as the three-dimensional vector V �
= (vx, vy,!).

The first two components make up the linear velocity v 2 R2, and the last compo-
nent is the angular velocity ! 2 R. Hence, we also frequently write V = (v,!).
This quantity can can be interpreted as the instantaneous “velocity” of the time-
varying transform T

s
b (t), just like angular velocity is for 2D rotations. At any

given time, the instantaneous center of rotation (ICR) is given by

q
s(t) = [v(t)]? /!(t). (2.7)

Note that for a pure translation this point lies at infinity, in the direction orthogonal
to v(t).

The SE(2) hat operator maps 2D differential twists to elements of se(2)

V̂ �
=


!̂ v

0 0

�

and the SE(2) vee operator extracts a 2D differential twist:

!̂(t) v(t)
0 0

�_
�
= (v,!) = V

The lie algebra se(2) is isomorphic to the vector space R3, so we can add differen-
tial twists and multiply them with scalars.

The Exponential Map

Can we get a closed form solution for ps(t) for a constant-twist trajectory? Using
the exponential map as before, with a constant differential twist V = (v,!), we
obtain:


p
s(t)
1

�
= exp(V̂t)


p
s(0)
1

�

where exp(!̂t) is the matrix exponential, now defined on 3⇥ 3 matrices.
We can obtain a closed-form solution for the exponential map above using

some more intuition, and the fact that for a constant differential twist the ICR is
also constant and equal to q = v

?
/!. Hence, we can simply conjugate a rotation

at the origin with a translation to q:

exp
⇣
V̂t
⌘
=


I q

0 1

� 
R(!t) 0

0 1

� 
I �q

0 1

�
(2.8)

9

where the 2⇥ 2 rotation matrix R(✓) is given as before:

R(✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Multiplying through, we obtain

exp
⇣
V̂t
⌘
=


R(!t) [I �R(!t)] v?/!

0 1

�
(2.9)

Note that for ! ⇡ 0 we have a division by zero above. However, note that

lim
!!0

R(!t)/! = lim
!!0


cos!t � sin!t
sin!t cos!t

�
/! =


1 �t

t 1

�

and hence

lim
!!0

[I �R(!t)] v?/! =


0 t

�t 0

�
v
? = vt

In practice, we handle this in the code by checking for small ! and setting

exp
⇣
V̂t
⌘
⇡

R(!t) vt

0 1

�

in that case.

2.3 Exercise

A rigid body is moving in SE(2) with a constant spatial velocity V = (3, 2, 1).
What is the velocity v

s of the point ps = (6, 7)?

10

3 Serial Link Manipulators

Figure 3.1: Top: the rest state of a planar RRR serial manipulator. Bottom: actuat-
ing the three degrees of freedom, respectively moving ✓3, ✓2, and ✓1.

This section describes the basic concepts, closely following [3, 1].
A serial link manipulator has several links, numbered 0 to n, connected by

joints, numbered 1 to n. Joint j connects link j�1 to link j. We will only consider
either a revolute joint with a joint angle ✓j , or a prismatic joint with a link offset
dj . More complex joints can be described as combinations of these basic joints.

We can treat both revolute and prismatic joins uniformly by introducing the
concept of a generalized joint coordinate qj , and specifying the joint type using
a string, e.g., the classical Puma robot is RRRRRR, and the SCARA pick and
place robot is RRRP. The vector q 2 Q of these generalized joint coordinates is
also called the pose of the manipulator, where Q is called the joint space of the
manipulator.

There are two more coordinate frames to consider: the base frame S, usually
attached directly to link 0, and the tool frame T , attached to the end-effector of the
robot. The tool frame T moves when the joints move.

All essential concepts can be easily developed for 2D or planar manipulators

11

with revolute joints only, an example of which is shown in Figure 3.1. The top
panel shows the manipulator at rest, along with five 2D coordinate frames: the
base frame S, the tool frame T , and one coordinate frame for each of the three
links, situated at each joint. Note that at rest, the first link is rotated by ⇡/2. For
this RRR manipulator, the generalized joint coordinates are q =

⇥
✓1 ✓2 ✓3

⇤T ,
and the effect of changing each individual joint angle ✓j is shown at the bottom of
the figure.

Key questions we will answer are how to determine the pose of the end-effector
tool, given joint angles, and the reverse question: what joint angles should we
command to get the tool to be at a desired pose? We start with the first question,
which is known as forward kinematics.

3.1 Exercise

What is the configuration string of the Fetch robot, excluding the base?

4 Forward Kinematics

The problem of forward kinematics can now be stated [3]:

Given generalized joint coordinates q 2 Q, we wish to determine the
pose T

s
t (q) of the tool frame T relative to the base frame S.

We define a link coordinate frame T
s
j (q) for every link j, and we define the link

coordinate frame T
s
0 to be identical to the base frame S. Since the tool frame T

moves with link n, we have

T
s
t (q) = T

s
n(q)X

n
t

where X
n
t specifies the unchanging pose of the tool T in the frame of link n. The

link coordinate frame T
s
n(q) itself can be expressed recursively as

T
s
n(q) = T

s
n�1(q1 . . . qn�1)T

n�1
n (qn),

finally yielding

T
s
t (q) = T

s
1 (q1) . . . T

j�1
j (qj) . . . T

n�1
n (qn)X

n
t . (4.1)

4.1 Exercise

Draw a simple two-link RP manipulator (similar to the original Unimate robot, but
in 2D) and provide the above forward kinematics formula.

12

5 Describing Serial Manipulators

Equation 4.1 is correct but we need to tie it to the robot’s geometry. If we agree on
making the link coordinate frame T s

j (q) coincide with joint axis j and fixed to link
j, then the link-to-link transform T

j�1
j (qj) can written as

T
j�1
j (qj) = X

j�1
j Z

j
j (qj)

where Xj�1
j is a fixed transform telling us where joint j is located in the coordinate

frame of the previous link, and Z
j
j (qj) represents the transform at the joint itself,

parameterized by the generalized joint coordinate qj . Substituting this into 4.1
yields

T
s
t (q) = X

s
1Z

1
1 (q1) . . . X

j�1
j Z

j
j (qj) . . . X

n�1
n Z

n
n (qn)X

n
t (5.1)

For planar revolute joints, the Z
j
j (q) transform can always be made of the form

Z
j
j (q) =

2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5 (5.2)

possibly with an offset applied to the joint angle. Most often the coordinate frames
are chosen such that the X

j�1
j transforms are as simple as possible.

Figure 5.1: Example of simple RRR manipulator with all three joints actuated:
✓1 = �30o, ✓2 = �45o, and ✓3 = �90o, respectively.

As an example, for the simple planar RRR manipulator we have

T
s
t (✓1, ✓2, ✓3) =

�
X

s
1Z

1
1 (✓1)

 �
X

1
2Z

2
2 (✓j)

 �
X

2
3Z

3
3 (✓n)

X

3
t

13

I chose the first joint coordinate frames as rotated by 90 degrees, which takes care
of the joint angle offset, and chose the tool pose with respect to the third link frame
as 2.5 m. along the x-axis:

X
s
1 =

2

4
0 �1 0
1 0 0
0 0 1

3

5 and X
3
t =

2

4
1 0 2.5
0 1 0
0 0 1

3

5

The next two transforms are simply translations along the link’s X axis:

X
1
2 =

2

4
1 0 3.5
0 1 0
0 0 1

3

5 and X
2
3 =

2

4
1 0 3.5
0 1 0
0 0 1

3

5

When multiplied out, we obtain

T
s
t (q) =

0

@
� sin� � cos� �3.5 sin ✓1 � 3.5 sin↵� 2.5 sin�
cos� � sin� 3.5 cos ✓1 + 3.5 cos↵+ 3.5 cos�
0 0 1

1

A (5.3)

with ↵ = ✓1 + ✓2 and � = ✓1 + ✓2 + ✓3, the latter being the tool orientation with
respect to rest.

5.1 Exercise

Provide the multiplied-out forward kinematics formula for your RP manipulator.

6 Product of Exponentials

The above exposition is cumbersome in that it involves a lot of intermediate coor-
dinate frames. Murray et. al. [3] developed a different approach that only involves
two coordinate frames: the base frame S and the tool frame T . In addition, it is
very easy to determine the parameters corresponding to each joint. The end-result
will express the forward kinematics as a product of exponentials (POE) of differ-
ential twists, which we define below for the planar case.

6.1 Product of Conjugations

Before tackling POE, however, let us look at a different formulation which only
involves regular transforms, albeit re-arranged in a slightly different way. As an

14

example, for a two link arm we have

T
s
t = T

s
a (q1)T

a
b (q2)T

b
t

= X
s
a0Z

a0
a (q1)X

a
b0Z

b0
b (q2)X

b
t

where, as before, Xs
a0 represents the pose of the first joint axis with respect to

the base frame, and X
a
b0 the pose of the second joint axis in the first link frame.

Finally, Xb
t is the tool frame in the second link frame. These three transformations

are constant and hence can also be derived from the joint poses at rest, e.g.

X
a
b0 = T

a0
b0 = T

a0
s T

s
b0

X
b
t = T

b0
t0 = T

b0
s T

s
t0

Hence, we can rewrite the forward kinematics as

T
s
t =

n
T
s
a0Z

a0
a (q1)T

a0
s

on
T
s
b0Z

b0
b (q2)T

b0
s

o
T
s
t0

= Z
s
a(q1)Z

s
b (q2)T

s
t0

where we defined the conjugated joint transform as

Z
s
j (qj) = T

s
j0Z

j0

j (qj)
�
T
s
j0

��1

The general product of conjugations formula is then

T
s
t (q) = Z

s
1(q1) . . . Z

s
j (qj) . . . Z

s
n(qn)T

s
t (0) (6.1)

The advantage is that we only have to inspect the joint poses for the manipulator
at rest. There is considerable freedom in choosing the T

s
j0 frames: for rotational

joints we have to specify the correct orientation (2DOF) and a point on the joint
axis (2DOF). For prismatic joints, only the orientation matters.

6.2 2D Unit Twists

The intuition behind the product of conjugations is to think about the rotation of
2D space around a joint: the conjugation machinery pulls us towards the joint,
executes the joint transform, and pushes us back. The idea behind the product
of exponentials formula is that can be done using a single matrix exponentiation
rather than three transformations as needed for conjugations. In particular, we want
to find the rigid transform T

s
s (✓) that takes points in frame S to rotated points in

15

the same frame. If the joint axis happens to be the origin, then the corresponding
3⇥ 3 matrix is very easy to write down,

T
s
s (✓) =


R(✓) 0
0 1

�
(6.2)

where the 2⇥ 2 rotation matrix R(✓) is given as usual:

R(✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�

When the joint axis is not the origin but some arbitrary point p, we saw that we can
write this by conjugating Equation 6.2 with a translation T

s
p to and from the joint

axis p:

T
s
s (✓) = T

s
p

�
T
p
p (✓)

 �
T
s
p

��1
=


I p

0 1

� 
R(✓) 0
0 1

� 
I �p

0 1

�
(6.3)

The above is a special case of the exponential map exp : R3 ! SE(2). For use
in forward kinematics we only work with unit twists S , with ! = 1. Indeed, for
revolute joints, the finite twist that corresponds to a 1 radian of rotation around the
joint axis p is the unit twist S = (�p

?
, 1) = (py,�px, 1).

6.3 Example

Figure 6.1: The effect of a twist around joint 3 on link 3.

To illustrate the idea with the planar example, let us look at a single joint,
say joint 3. Since the joint axis in rest is at (0, 7), the corresponding unit twist is

16

Figure 6.2: The effect of a twist around joint 2, on links 2 and 3.

S3 = (7, 0, 1), with associated transform matrix given by

T
s
s (✓3) = exp

⇣
Ŝ3✓3

⌘
=

2

4
1 0 0
0 1 7
0 0 1

3

5

2

4
cos ✓3 � sin ✓3 0
sin ✓3 cos ✓3 0
0 0 1

3

5

2

4
1 0 0
0 1 �7
0 0 1

3

5

=

2

4
cos ✓3 � sin ✓3 7 sin ✓3
sin ✓3 cos ✓3 7(1� cos ✓3)
0 0 1

3

5

If we view the transform exp
⇣
Ŝ3✓3

⌘
as acting on all points, expressed in the base

frame S, then it also applies to the entire link 3. This is illustrated in Figure 6.1,
where the first panel shows the links of the arm in the rest configuration, and the
next panels show the effect of the global transform.

In forward kinematics we are mostly interested in the pose of the tool. Hence,
if T s

t (0) is the tool pose for a zero joint angle, then it follows that for a non-zero
angle we have

T
s
t (✓3) = T

s
s (✓3)T

s
t (0) = exp

⇣
Ŝ3✓3

⌘
T
s
t (0)

Now we can ask what happens if we move joint 2. Since the joint axis in
rest is at (0, 3.5), the corresponding unit twist is S2 = (3.5, 0, 1), with associated
transform matrix

T
s
s (✓2) = exp

⇣
Ŝ2✓2

⌘
=

2

4
cos ✓2 � sin ✓2 3.5 sin ✓2
sin ✓2 cos ✓2 3.5(1� cos ✓2)
0 0 1

3

5

In Figure 6.2, I show the effect of the exponential map exp
⇣
Ŝ2✓2

⌘
on the last two

links. Now, since a twist acts on the entire space, if we apply it to the tool frame

17

T
s
t (✓3) after it has been moved by exp

⇣
Ŝ3✓3

⌘
, it stands to reason that the effect

of moving the two last joints is given by

T
s
t (✓2, ✓3) = exp

⇣
Ŝ2✓2

⌘
T
s
t (✓3) = exp

⇣
Ŝ2✓2

⌘n
exp

⇣
Ŝ3✓3

⌘
T
s
t (0)

o

This formula generalizes in the obvious way for the entire joint configuration,

T
s
t (q) = exp

⇣
Ŝ1✓1

⌘
exp

⇣
Ŝ2✓2

⌘
exp

⇣
Ŝ3✓3

⌘
T
s
t (0) (6.4)

where the last remaining transform exp
⇣
Ŝ1✓1

⌘
uses the unit twist S1 = (0, 0, 1),

as the axis of the first joint is the origin. The tool at rest is given by

T
s
t (0) =

0

@
0 �1 0
1 0 9.5
0 0 1

1

A

When multiplied out, we get exactly the same as in Equation 5.3.

6.4 General Case

In general, for any serial manipulator with n joints, we have the following product
of exponentials expression for the forward kinematics,

T
s
t (q) = exp

⇣
Ŝ1✓1

⌘
. . . exp

⇣
Ŝj✓j

⌘
. . . exp

⇣
Ŝn✓n

⌘
T
s
t (0) (6.5)

and, while the left-to-right order has to follow the manipulator structure, the for-
mula above does not depend on the order in which the actual joints are actuated.

6.5 Exercise

Provide the POE for your RP example.

18

7 Three-dimensional Geometry

The story above generalizes almost entirely to three dimensions. We start with
some geometry.

7.1 Rotations in 3D aka SO(3)

Basic Facts

Rotating a point in 3D around the origin from a moving body frame B to a base
frame S can be done by multiplying with a 3⇥ 3 orthonormal rotation matrix

p
b = R

s
bp

b

where the indices on R
s
b indicate the source and destination frames. The columns

of Rs
b represent the axes of frame B in the S coordinate frame:

R
s
b =

⇥
x̂
s
b ŷ

s
b ẑ

s
b

⇤

The 3D rotations together with composition constitute the special orthogonal
group SO(3). It is made up of all 3⇥ 3 orthonormal matrices with determinant 1,
with matrix multiplication implementing composition. However, 3D rotations do
not commute, i.e., in general R2R1 6= R1R2.

Intuition

The intuition for 3D rotations stems from Euler’s theorem:

Theorem. Every 3D rotation can be expressed as a rotation around a single axis.

Consider the trajectory traced out by spatial coordinates of a point pb on a rigid
rotating body in 3D:

p
s(t) = R

s
b(t)p

b
.

Then the theorem says that at any given moment the velocity vector vs(t) of the
point must be consistent with a rotational trajectory around an axis ns(t), i.e.,

v
s(t) = !(t) [ns(t)⇥ p

s(t)] = ⌦(t)⇥ p
s(t) (7.1)

where ns(t), a unit vector, is the instantaneous rotation axis, and ⌦(t)
�
= !(t)ns(t)

is the time-varying angular velocity vector: its direction defines the rotation axis,

19

and its magnitude the angular velocity. Following the pattern established above,
we can rewrite this to find a Lie algebra for SO(3):

v
s(t) = ⌦(t)⇥ p

s(t)

= b⌦(t)ps(t)

where the cross product was rewritten as multiplication with the skew-symmetric
matrix b⌦:

b⌦ �
=

2

4
0 �!z !y

!z 0 �!x

�!y !x 0

3

5

Hence, we see that the Lie algebra so(3) associated with SO(3) is the space of
skew-symmetric matrices, and the above is the hat operator for so(3). The lie
algebra so(3) is isomorphic to the vector space R3, so we can add angular velocity
vectors and multiply them with scalars.

The Exponential Map

We can obtain a closed-form solution for the exponential map for SO(3) by think-
ing about the finite displacement of a point pb undergoing a constant rotational
motion specified by ⌦ = !n

s :

p
s = p

b + n
s ⇥ n

s ⇥ p
b +

⇣
n
s ⇥ p

b
⌘
sin!t�

⇣
n
s ⇥ n

s ⇥ p
b
⌘
cos!t

=
⇥
I +N sin!t+N

2(1� cos!t)
⇤
p
b

where N
�
= cns is the skew-symmetric matrix associated with the rotation axis.

Hence, the exponential map for SO(3) is

exp
⇣
⌦̂t
⌘
= I +N sin!t+N

2(1� cos!t) (7.2)

This is the well known Rodrigues’ formula.

7.2 3D Rigid transforms aka SE(3)

Basic Facts

A point pb on a rigid moving in three-space can be transformed by a 3D rigid
transform, which is a 3D rotation followed by a 3D translation, to be expressed in
a fixed base frame S,

p
s = R

s
bp

b + t
s
b

20

where R
s
b 2 SO(3) and t

s
b 2 R3. We denote this transform by T

s
b

�
= (Rs

b, t
s
b).

The special Euclidean group SE(3), with the group operation defined similarly
as in Equation 2.4. Moreover, the group SE(3) is a subgroup of a general linear
group GL(4) of degree 4, by embedding the rotation and translation into a 4 ⇥ 4
invertible matrix defined as

T
s
b =


R

s
b t

s
b

0 1

�

Again, by embedding 3D points in a four-vector, a 3D rigid transform acting on a
point can be implemented by matrix-vector multiplication:


R

s
b t

s
b

0 1

� 
p
b

1

�
=


R

s
bp

b + t
s
b

1

�

Intuitions

The intuition for rigid transforms in 3D stems from the far-from-obvious Chasles’
theorem:

Theorem. Every 3D rigid transform can be expressed as a rotation around an
axis, followed by a translation along that axis (or vice versa, the two operations in
this case commute).

The axis in question is called the screw axis, and the trajectory traced out
by spatial coordinates of a point pb on a rigidly moving body describes a helical
(screw) motion around the axis. We take the velocity induces by the rotation, and
simply add a translational component in the direction of the axis

v
s(t) = ⌦(t)⇥ [ps(t)� q

s(t)] + �⌦(t)

where q
s(t) is any point on the screw axis, and � is defined as the pitch of the

screw motion, i.e., the proportion of the translational vs. the rotational component.
We see that 

v
s(t)
0

�
=


⌦̂(t) v(t)
0 0

� 
p
s(t)
1

�

where v(t)
�
= q

s(t)⇥ ⌦(t) + �⌦(t) is again the velocity of the origin. Hence, the
4⇥ 4 matrices of the form


⌦̂ v

0 0

�
=

2

664

0 �!z !y vx

!z 0 �!x vy

�!y !x 0 vz

0 0 0 0

3

775

21

are elements of the Lie algebra se(3) associated with SO(3).
In 3D, a differential twist1 is given by an angular velocity ⌦ 2 R3 and a linear

velocity v 2 R3, collected in a column vector V 2 R6 :

V �
=


⌦
v

�

At any given time, the point on the screw axis closest to the origin is given by

q = [⌦/!]⇥ v/! =
⌦⇥ v

!2
. (7.3)

Compare that with Equation 2.7, and it looks very familiar.

The Exponential Map

We can use the point q above by deriving a closed form for the exponential map
by conjugation: move to the screw axis, execute the screw motion, and move back.
For a constant differential twist V = (⌦, v), with ! = k⌦k 6= 0, the exponential
map exp : so(3) ! SE(3) is then given by

exp
⇣
V̂t
⌘
=


I q

0 1

� "
e
⌦̂t (�t)⌦
0 1


I �q

0 1

�
(7.4)

where the rotation matrix R(!t) is given by Rodrigues’ formula. The above is but
a simple generalization of a circular arc in 2D to a screw motion in 3D.

Multiplying through, and making use of ⌦ = n!, q = (n ⇥ v)/! = Nv/!,
and � = n

T
v/! we get

exp
⇣
V̂t
⌘
=

"
e
⌦̂t

h
I � e

⌦̂t
i
q + (�t)⌦

0 1

#

=

"
e
⌦̂t

h
I � e

⌦̂t
i
Nv/! + nn

T
vt

0 1

#

7.3 Exercise

A rigid body is moving in SE(3) with a constant spatial velocity V = (0, 1, 0, 0, 2, 0).
What is the velocity v

s of the point ps = (6, 7, 8)?
1Note we follow a different convention from [3] in that we reserve the first three components for

rotation, and the last three for translation.

22

8 Spatial Manipulators

8.1 Kinematic Chains in Three Dimensions

In three dimensions the matrices are now 4 ⇥ 4, but exactly the same expressions
are use to describe a kinematic chain:

T
s
t (q) = T

s
1 (q1) . . . T

j�1
j (qj) . . . T

n�1
n (qn)X

n
t . (8.1)

and to describe any serial manipulator we can again alternate fixed link transforms
X

j�1
j and parameterized joint transforms Zj

j (qj):

T
s
t (q) = X

s
1Z

1
1 (q1) . . . X

j�1
j Z

j
j (qj) . . . X

n�1
n Z

n
n (qn)X

n
t (8.2)

In 3D we typically obey the convention that the axis of rotation is chosen to be the
Z-axis, hence the suggestive naming of the corresponding matrix parameterized
by a joint angle. We can now also introduce prismatic joints, which are typically
parameterized as translations along the Z-axis.

8.2 Denavit-Hartenberg Conventions

No introduction to serial manipulators is complete without mentioning the Denavit-
Hartenberg convention, which is a particular choice of coordinate frames to make
equation 8.2 as simple as possible. In particular, as suggested by the alternation of
matrices named X and Z, we ensure that

1. all joint axes are aligned with the Z-axis, and the corresponding transform is
parameterized by two parameters, a rotation ✓ around Z and a displacement
d along Z;

2. the X-axis is chosen to be the common perpendicular between two suc-
cessive joint axes, and the link geometry is described by two parameters, a
rotation ↵ around X and a displacement a along X .

It might be surprising that only four parameters (✓, d,↵, a) are needed to specify
the location of one frame relative to another. However, these frames are special
since they have two independent conditions imposed: the X-axis intersects the
next Z-axis, and is perpendicular to it [2].

Subject to these two constraints, there are two popular variants in use, the prox-
imal and distal variants, that differ on where they put the coordinate frame on the
link. In the distal variant, the link coordinate frame T s

j (q) is made to coincide with

23

joint axis j + 1, and link frame n is defined to be identical to the tool frame. This
convention is a bit awkward to work with.

In the simpler, proximal variant, also denoted the modified Denavit-Hartenberg
convention in [1], the link coordinate frame T

s
j (q) is made to coincide with joint

axis j, and the transform T
j�1
j (qj) between links is written as:

T
j�1
j (qj) = X

j�1
j (↵j�1, aj�1)Z

j
j (✓j , dj)

where qj is either ✓j for a revolute joint, or to dj for a prismatic joint, and

X
j�1
j (↵j�1, aj�1) = TRx(↵j�1)Tx(aj�1) Z

j
j (✓j , dj) = TRz(✓j)Tz(dj)

8.3 Product of Exponentials in 3D

To generalize the product of exponentials formula, we need the concept of a 3D
unit twist S , which consist of an axis of rotation !̄ combined with a linear motion
vector v̄, which defines a rotational or translational motion around the joint.

For a prismatic joint, a unit twist is simply S = (0, v̄), with v̄ a specifying the
direction of motion, and the exponential map is just a translation:

exp (St) =

I v̄t

0 1

�

For a revolute joint, the unit twist is given by S = (!̄, p ⇥ !̄), where !̄ is a unit
vector specifying the axis of rotation, and p is any point on the joint axis. In this
case the exponential map simplifies to

exp (S✓) =

I p

0 1

� 
R(!̄✓) 0

0 1

� 
I �p

0 1

�

The general formula for the rotation matrix R(!̄✓) is given in the appendix, but is
easy whenever the rotation axis !̄ is aligned with a coordinate axis. For example,
for a rotation around the Z-axis, i.e., ! = [0, 0, 1]T we have

R(!̄✓) = R([0 0 ✓]T) =

2

4
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

3

5

and similarly, for respectively the X-axis and Y-axis, we have

R([✓ 0 0]T) =

2

4
1 0 0
0 cos ✓ � sin ✓
0 sin ✓ cos ✓

3

5

24

R([0 ✓ 0]T) =

2

4
cos ✓ 0 sin ✓
0 1 0

� sin ✓ 0 cos ✓

3

5

Finally, we obtain the same product of exponentials as in the planar case,

T
s
t (q) = exp

⇣
Ŝ1q1

⌘
. . . exp

⇣
Ŝjqj

⌘
. . . exp

⇣
Ŝnqn

⌘
T
s
t (0) (8.3)

8.4 Detailed Example: The Pincher Robot

Figure 8.1: Pincher robot at rest, with all joint angles at 0. The chosen base frame
S and tool frame T are shown as RGB coordinate frames.

The Pincher robot is shown in Figure 8.1 in its rest configuration. I chose to put
the base frame S at the intersection of the vertical joint 1 axis and the horizontal
joint 2 axis, which makes the transforms for the first two joint axes easy, with unit
twists S1 = (0, 0, 1, 0, 0, 0) and S2 = (1, 0, 0, 0, 0, 0), respectively:

e
S1✓1 =

0

BB@

cos ✓1 � sin ✓1 0 0
sin ✓1 cos ✓1 0 0
0 0 1 0
0 0 0 1

1

CCA and e
S2✓2 =

0

BB@

1 0 0 0
0 cos ✓2 � sin ✓2 0
0 sin ✓2 cos ✓2 0
0 0 0 1

1

CCA

25

Note that the joint angles are measured from the configuration at rest, and positive
joint angles will make the arm lean backwards.

The third joint axis, at rest (all servos at 512) is 10.5 cm above the second one.
We can just conjugate a rotation around the x-axis, corresponding to the unit twist
S3 = (1, 0, 0, 0, 10.5, 0):

e
S3✓3 =

0

BB@

1 0 0 0
0 cos ✓3 � sin ✓3 10.5 sin ✓3
0 sin (✓3) cos (✓3) 10.5(1� cos ✓3)
0 0 0 1

1

CCA

The fourth joint is the same, except it is higher, with unit twist S4 = (1, 0, 0, 0, 21, 0):

e
S4✓4 =

0

BB@

1 0 0 0
0 cos ✓4 � sin ✓4 21 sin ✓4
0 sin ✓4 cos ✓4 21(1� cos ✓4)
0 0 0 1

1

CCA

Finally, the fifth DOF controls the gripper and is not included in the inverse kine-
matics. The tool frame, at rest, is 6.5 cm above the fourth joint:

T
s
t (0) =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 27.5
0 0 0 1

1

CCA

Multiplying all these together, we get the forward kinematics as follows:

T
s
t (q) = exp

⇣
Ŝ1✓1

⌘
exp

⇣
Ŝ2✓2

⌘
exp

⇣
Ŝ3✓3

⌘
exp

⇣
Ŝ4✓4

⌘
T
s
t (0) =

0

BB@

cos ✓1 � sin ✓1 cos� sin ✓1 sin�
1
2 sin ✓1 (21 sin ✓2 + 21 sin↵+ 13 sin�)

sin ✓1 cos ✓1 cos� � cos ✓1 sin� �1
2 cos ✓1 (21 sin ✓2 + 21 sin↵+ 13 sin�)

0 sin� cos� 1
2 (21 cos ✓2 + 21 cos↵+ 13 cos�)

0 0 0 1

1

CCA

where ↵ = ✓2 + ✓3 and � = ✓2 + ✓3 + ✓4. It is easy to see that the first joint
angle ✓1 rotates the entire arm around the vertical, and that the other angles dictate
the kinematics in that rotated frame. In fact, not coincidentally, when setting ✓1 to
zero we can recognize exactly the same structure as the three-link kinematics chain
from Equation 5.3, in the Y-Z plane:

T
s
t (0, ✓2, ✓3, ✓4) =

0

BB@

1 0 0 0
0 cos� � sin� �1

2 (21 sin ✓2 + 21 sin↵+ 13 sin�)
0 sin� cos� 1

2 (21 cos ✓2 + 21 cos↵+ 13 cos�)
0 0 0 1

1

CCA

26

It is clear from this that, with three joints in this plane and the rotation around joint
1, we can reach any 3D pose within the workspace. However, we have no way of
rotating the tool around its Z-axis.

Figure 8.2: The pose of the robot with joint angles q = (�45o
,�45o

,�45o
, 0).

To test the FK, let us plug in some angles:

T
s
t (�45o

,�45o
,�45o

, 0) =

0

BBB@

1p
2

0 1p
2

17.3

� 1p
2

0 1p
2

17.3

0 �1 0 7.4
0 0 0 1

1

CCCA

It can be verified in Figure 8.2 (and I verified it in reality) that the tool is indeed
horizontal now, rotated 45 degrees to the left, and is at position (17.3, 17.3, 7.4)
with respect to the chosen base frame.

8.5 Exercise

Let us now consider the 3D Unimate robot, which is RRP, with the first rotation
around vertical (yaw, around a vertical Z axis), and the second rotation is around
the Y-axis (pitch). Provide the POE formula and calculate the end-effector pose for
an arbitrary pose where the arm extends upwards.

27

A Appendix: Geometry Reference

A.1 Planar Rotations aka SO(2)

1. As a matrix group SO(2) ⇢ GL(2):

R(✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�

2. Spatial velocity:
v
s(t) = !(t) [ps(t)]?

3. Lie algebra isomorphic to R, the space of angular velocities !. Hat operator
given by:

!̂ 2 so(2)
�
=


0 �!

! 0

�

4. The exponential map:

exp(!̂t) =


cos!t � sin!t
sin!t cos!t

�

A.2 Rotations in 3D aka SO(3)

1. As a matrix group SO(3) ⇢ GL(3):

R
s
b =

⇥
x̂
s
b ŷ

s
b ẑ

s
b

⇤

2. Spatial velocity:
v
s(t) = ⌦(t)⇥ p

s(t)

3. Lie algebra isomorphic to R3, the space of angular velocity vectors ⌦. Hat
operator given by:

b⌦ �
=

2

4
0 �!z !y

!z 0 �!x

�!y !x 0

3

5

4. The exponential map, with N = ⌦̂/!:

exp
⇣
⌦̂t
⌘
= I +N sin!t+N

2(1� cos!t)

28

A.3 2D Rigid Transforms aka SE(2)

1. As a matrix group: SE(2) ⇢ GL(3):

T
s
b =


R

s
b t

s
b

0 1

�

2. Spatial velocity:
v
s(t) = !(t) [ps(t)� q

s(t)]?

3. Lie algebra isomorphic to R3, the space of 2D differential twist coordinates
V �
= (vx, vy,!). Hat operator given by:

V̂ 2 se(2) =


!̂ v

0 0

�
=

2

4
0 �! vx

! 0 vy

0 0 0

3

5

4. The exponential map, with q = v
?
/!:

exp
⇣
V̂t
⌘
=


I q

0 1

� 
exp(!̂t) 0

0 1

� 
I �q

0 1

�
=


exp(!̂t) [I � exp(!̂t)] v?/!

0 1

�

A.4 3D Rigid transforms aka SE(3)

1. As a matrix group: SE(3) ⇢ GL(4):

T
s
b =


R

s
b t

s
b

0 1

�

2. Spatial velocity:

v
s(t) = ⌦(t)⇥ [ps(t)� q

s(t)] + �⌦(t)

3. Lie algebra isomorphic to R6, the space of 3D differential twist coordinates
V �
= (⌦, v). Hat operator given by:

V̂ 2 se(3) =


⌦̂ v

0 0

�

4. The exponential map, with q = (⌦⇥ v)/!2:

exp
⇣
V̂t
⌘
=


I q

0 1

� "
e
⌦̂t (�t)⌦
0 1


I �q

0 1

�
=

"
e
⌦̂t

h
I � e

⌦̂t
i
Nv/! + nn

T
vt

0 1

#

29

A.5 Unit twists

As defined in Lynch & Park, a unit twist is either a pure velocity or a screw:

• if ! = 0 then S = (0, v/ kvk), and corresponding twist V = Sv = (0, v);

• if ! 6= 0 then S = (⌦/!, v/!) = (n, v/!), and corresponding twist V =
S! = (⌦, v).

30

References

[1] Peter Corke. Robotics, Vision, and Control. Springer, 2011.

[2] H. Lipkin. A note on Denavit-Hartenberg notation in robotics. In Proc. ASME
IDETC/CIE, pages 921–926, 2005.

[3] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

31

