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1 Planning

Move(X,Y)

Monkey=Y

Monkey=X Level=Low

MoveBox(X,Y)

Monkey=Y Box=Y

Monkey=X Box=X level=Low

Figure 1: Two actions a monkey can take, along with their preconditions and postconditions. Note
that in these diagrams the postconditions only specify the variables that changed.

let us consider a very simple planning problem, taken from the Wikipedia entry on STRIPS, a
language to express planning problems in. You can read a blog post about the problem, including a
cool photo, in this medium post. However, rather than propositional logic as is common in STRIPS,
let us use multi-valued, discrete variables to describe the problem:

1. A monkey can be at locations A,B, or C, denoted by the variable Monkey ∈ {A,B,C}

2. Bananas, suspended from the ceiling, are also at one of these locations: Bananas ∈ {A,B,C}

3. The monkey has the bananas, or not: HasBananas ∈ {True, False}

4. Theres is a box that the monkey can move, Box ∈ {A,B,C}

5. Finally, the monkey can climb on the box: Level ∈ {Low,High}

The monkey is now faced with the following planning problem: it is at location A, the bananas are
at location B, and the box is at location C. The monkey wants to have the bananas.

Normally, in STRIPS, there is now a lot of textual descriptions of actions, but instead we
will use some graphical templates to define actions in terms of preconditions and postconditions,
shown in Figure 1 and 2. For example, for the monkey to move from X to Y, or take the action
Move(X,Y ), the precondition is that it is at location X, i.e., Monkey = X, and the postcondition
is Monkey = Y .
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ClimbUp(X)

Level=High

Monkey=X Box=X Level=Low

TakeBananas(X)

HasBananas=True

Monkey=X Bananas=X Level=High

ClimbDown(X)

Level=Low

Monkey=X Box=X Level=High

Figure 2: Three more actions the monkey can take, now involving the Level of the monkey, which
is either High or Low. The monkey can only have the bananas when it is high :-).

X1 X2 X3 X4

A1 A2 A3

Figure 3: A dynamic Bayesian network (DBN).

2 Dynamic Bayesian Networks

By introducing time and defining a state, we can define something akin to a dynamic Bayesian
network (DBN) that describes a planning problem, only there are no probabilities involved. If we
define the state X as X = (Monkey,Bananas,HasBananas,Box, Level), then the initial state
can be written as a prior P (X1), and the effect of taking an action at time t, denoted by At, can
be written in the form of a conditional distribution, yielding the DBN,

P (X1) and P (Xt+1|Xt, At)

a fragment of which is shown in Figure 3.
However, in planning it is common to regard the states not as monolithic but factored, and it

will be beneficial to express this in the DBN as well, by making explicit for each variable how it
depends on the variables at the previous time, and the chosen action. A slice of this factored DBN
for the monkey problem is shown in Figure 4. Intuitively speaking, factoring the state into multiple
variables rather than one large state variable makes it possible to omit some of the arrows, because
the next state of certain variables might not depend on all variables in the previous time step.

For deterministic planning, the entries in the conditional probability table will contain either 0
or 1, because the actions have deterministic outcomes. Interestingly, this immediately suggests the
possibility of making the outcome of actions probabilistic: an action might or might not succeed, in
which case this becomes a Markov decision problem, i.e., a factored MDP [Guestrin et al., 2003].

3 Graphplan

The DBN can be unrolled using a factor graph representation, as shown in Figure 5. This will come
down to a factor graphs of hard constraints, because there are no probabilities involved. Each
constraint factor is happy only if the state Xt+1 is the outcome of applying action At in state Xt.
Note that in each time slice, because the actions are parameterized, the actions variable At can
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Figure 4: A slice of the factored DBN describing the “monkey” planning problem. There is a single
conditional distribution per variable, taking into account which action is executed.

X2 X3 X4X1

A1 A2 A3

Figure 5: The factor graph representation of a planning DBN.

take on a large number of values. In the monkey domain there are three locations, A,B, and C, and
hence 9 possible Move(X,Y ) actions. Likewise, there are 9 MoveBox actions, and three ClimbUp,
TakeBananas, and Climbdown actions, for a total of 27 actions in this simple domain.

Graphplan [Blum and Furst, 1997] is a seminal algorithm introduced by Merrick Furst (at
Georgia Tech!) and Avrim Blum, who take this one step further: they allow for actions to be taken
in parallel. In the monkey example, because we have 27 possible actions, we now have 227 possible
sets of actions! Clearly, this is a combinatorial explosion that we cannot easily deal with. However,
graphplan factors the single action variable from the DBN formulation as well, using 27 binary
variables, one for each possible action. Doing so does make it easy to reason about the mutual
exclusion constraints between action instantiations, which now become binary constraints.

The propositional approach of graphplan is taking it too far for some: rather, we could take a
CSP approach and represent obviously mutually exclusive actions with a single, multi-valued discrete
variable. In the monkey example, it is clear that the monkey cannot do any of the actions in parallel,
and we recover the simpler DBN formulation above. This “bundling” of mutually exclusive actions
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Figure 6: Factor-graph representation of factored planning DBN. There is a factor that governs the
transition of every variable, conditioned on the action.

into a single multi-valued variable is often done as a pre-processing step for modern search-based
planners [Helmert, 2006, Richter and Westphal, 2010].

One time-slice of a compromise factor graph for the monkey problem is shown in Figure 6.
This is not exactly a planning graph as discussed by Blum and Furst, but it comes quite close. In
graphplan, the states are encoded using propositional variables, and so are the actions, making for
an even finer-grained graph. However, most of the information obtainable using a planning graph
is represented in this factor graph slice.

4 Search

Solving the planning problem can now be seen as searching in an infinitely long factor graph.
However, we can provide a lower-bound on the time it will take to execute the plan. By instantiating
the initial state at time t = 1, we can propagate the constraints in time, discovering the first time
at which the goal state can hold. If we cannot find a plan of that length, we can extend the graph
by 1 and try again, i.e., an iterative deepening type strategy. Backward search would start by
instantiating the goal state XT = G at time T , which will automatically lead to a depth first search.
Forward search starts with the start state X1 = S, and searches forward in time.

We can use both constraint propagation and heuristics to make the search efficient. Search in
these spaces can be quite expensive, think of trying to solve a Sudoku using search! Hence, just like
in a Sudoku, search is typically combined with forward checking/constraint propagation at every
iteration. In a Sudoku this goes as follows: if a certain number is filled into the grid, we erase all
other values in all other cells that are incompatible with it. This generalizes easily to the current
planning setup.
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Good heuristics currently are the key to the best performance in planning. Rather than local
constraint propagation, they provide a longer term perspective. Indeed, if we remember the analogy
with HMMs, we are really trying to do inference in a possible very long chain of states/actions,
finding feasible plan that takes us all the way from the start state to the goal state. Brute-force
inference can be seen to do this in a slice-by-slice manner. However, if we had a notion for each
state Xt of how long it would take us (or how much it would cost us) to plan from that state to the
goal state (or a lower bound, i.e., a heuristic), we could explore the most promising states first.

Many modern heuristics are derived from relaxed versions of the original planning problem. For
example, the family of Fast Forward (FF) planner [Hoffmann and Nebel, 2001] from the University
of Freiburg uses a relaxation of the planning problem in which delete lists are ignored, and is among
the most successful planners today. A delete list is the list of pre-conditions that have to be negated:
in the monkey example, we should make sure that if the Move(X,Y ) action is chosen, the monkey is
no longer at X. But if we ignore this basic fact, the monkey can be at both X and Y: clearly a fiction,
but maybe the monkey can get to the bananas faster this way! FF uses graphplan as a subroutine
to find the length of a relaxed plan (without delete lists) which is always an underestimate of the
actual optimal plan length.

5 SATplan

SATplan [Kautz and Selman, 1992, Kautz and Selman, 1999] uses the same ideas as above, but
uses propositional logic instead of constraints, to turn the problem into one of Boolean satisfiability
(SAT). Any constraint satisfaction problem (CSP) as above can be converted into a SAT problem
in a variety of ways, and then a SAT solver can be called to solve the planning problem.

It was noted by the authors of MaxPlan [Xing et al., 2006], another planner based on satisfiabil-
ity, that the iterative deepening approach is faced with the task of repeatedly proving that no plan
can be found for successive time steps. This is potentially very expensive, as this implies exhausting
the entire search space. Hence, instead MaxPlan uses a non-optimal planner to find the maximum
plan length and then successively reduces from that upper bound, which can be done much faster.
They tied for first place in that year’s planning competition, the other being the 2006 version of
SATplan.

This asymmetry between satisfiable and unsatisfiable also shows up in the choice of algorithm
used. In [Kautz and Selman, 1996] it is shown that WalkSAT, a greedy random walk version of
SATplan, can find plans very quickly for a given time horizon T , if one exists. However, proving
that a plan is optimal is beyond the capabilities of WalkSAT, which is incomplete: instead, this
requires an exhaustive search.

6 Summary

Classical planning can be seen as a “hard” version of Markov decision problems, which can be
described using dynamic Bayes nets. In turn, Bayes nets can easily be converted to factor graphs
that represent the corresponding planning problems as a constraint satisfaction problem (CSP). The
dominant paradigm for optimizing planners is search, and both constraint propagation and heuristics
are important to make search efficient. Some of the most efficient solvers convert planning CSPs to
Boolean satisfiability (SAT), for which very efficient search algorithms have been developed. But,
for easy problems, a simple greedy search like WalkSAT can work very well.
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