
8803MM: Trajectory Control and IK

Frank Dellaert
Center for Robotics and Intelligent Machines

Georgia Institute of Technology

April 12, 2020

Contents

1 Review: Forward Kinematics 2

2 Trajectory Control and the Manipulator Jacobian 4

3 Inverse Kinematics 7
3.1 Closed-Form Solutions . 7
3.2 Iterative Methods . 8
3.3 Damped Least-Squares . 10
3.4 Iterative IK Methods Summary 10

4 Redundant Manipulators 11

1

1 Review: Forward Kinematics

The problem of forward kinematics (FK) is [2]:

Given generalized joint coordinates q ∈ Q, we wish to determine the
pose T st (q) of the tool frame T relative to the base frame S.

One way to define FK of planar arms (in 2D) is to adopt the following strategy:

• We take frame 0 (the base frame) to have its origin at the center of Joint 1,
i.e., on the axis of rotation.

• We rigidly attach Frame i is to Link i, in such a way that it has its origin at
the center of Joint i+ 1.

• The xi-axis is chosen to be collinear with the origin of Frame i− 1.

• Define the link length ai as the distance between the origins of Frames i and
i− 1.

Defining Tnt to be the unchanging pose of the tool T in the frame of link n, and
concatenating all transforms we obtain the following recursive equation for FK:

T 0
t (q) = T 0

1 (q1) . . . T
i−1
i (qi) . . . T

n−1
n (qn)T

n
t . (1.1)

2

Figure 1.1: Example of simple RRR manipulator with all three joints actuated:
θ1 = 60o, θ2 = −45o, and θ3 = −90o, respectively.

As an example, Figure 1.1 shows a planar RRR manipulator with a1 = 3.5, a2 =
3.5, and a3 = 2. We identified the tool frame with link frame 3, i.e., X3

t = I . We
then have:

T 0
1 =

 cos θ1 − sin θ1 3.5 cos θ1

sin θ1 cos θ1 3.5 sin θ1

0 0 1

T 1

2 =

 cos θ2 − sin θ2 3.5 cos θ2

sin θ2 cos θ2 3.5 sin θ2

0 0 1

T 2
3 =

 cos θ3 − sin θ3 2 cos θ3

sin θ3 cos θ3 2 sin θ3

0 0 1

When multiplied out, we obtain

T st (q) =

 cosβ − sinβ 3.5 cos θ1 + 3.5 cosα+ 2 cosβ
sinβ cosβ 3.5 sin θ1 + 3.5 sinα+ 2 sinβ
0 0 1

 (1.2)

with α = θ1 + θ2 and β = θ1 + θ2 + θ3, the latter being the tool orientation.

3

2 Trajectory Control and the Manipulator Jacobian

Trajectory following is an important capability for manipulator robots, and three
main approaches are common:

1. Trajectory replay

2. Joint space motion control

3. Cartesian space motion control.

The first relies on an operator to perform the motion first, after which the robot
simply replays the sequence, and is akin to motion-capture in movies. Even then,
to interpolate between waypoints obtained by robot programming, one of the two
other methods is needed.

Figure 2.1: In joint-space motion control, the joint angles are linearly interpolated,
but this leads to a curved path in Cartesian space.

Joint space motion control is the easiest, and applies linear interpolation or a
simple control law in joint space to move from one waypoint to the other, e.g.,

qt+1 = qt +Kp(qd − qt)

where qt and qd are the current and desired joint angles, and Kp is a proportional
gain. An example of this is shown in Figure 2.1 for the three-link manipulator.

4

More difficult is Cartesian motion control, where we want the robot to follow
a well-defined path in Cartesian space, most often a straight line or some inter-
polating spline. One approach is to calculate an inverse kinematics solution (see
Section 3) at many intermediate waypoints and apply joint control again, to get
from one to the other. However, there is a method by which we can avoid inverse
kinematics altogether. Because we eventually do need to control the joint angles q,
the key is to derive a relationship between velocities (ẋ, ẏ, θ̇) in pose space in re-
sponse to commanded velocities in joint space q̇. This relationship is locally linear,
and hence we have the following expression at a given configuration q:

(ẋ, ẏ, θ̇) = J(q)q̇ (2.1)

The quantity J(q) above is the manipulator Jacobian. For planar manipulators, as
(ẋ, ẏ, θ̇) ∈ R3, the Jacobian is a 3× n matrix, with n is the number of joints. Each
column of the Jacobian J(q) contains the velocity (ẋ, ẏ, θ̇) ∈ R3 corresponding a
change in the joint angle qj only, i.e.,

J(q)
∆
=
[
J1(q) J2(q) . . . Jn(q)

]
where

Ji(q)
∆
=
∂(x(q), y(q), θ(q))

∂qj
=

∂x(q)
∂qj
∂y(q)
∂qj
∂θ(q)
∂qj

Example. A graphical way to appreciate what a Jacobian means physically is to
draw the 2D velocities in Cartesian space. For the three-link planar manipulator
example, Figure 2.2 shows the Jacobian J(q) as a set of three velocities: red for
joint 1, green for joint 2, and blue for joint 3. Clearly, these depend on the current
joint angles q. The pattern is clear: these velocities are always perpendicular to the
vector to the joint axis, and proportional to the distance to the joint axis.

Let us calculate the Jacobian J(q) for the three-link planar manipulator exam-
ple. To analytically compute the Jacobian in this case, we can read off the pose
T (q) components from the forward kinematics equation 1.2 on page 3, yielding x(q)

y(q)
θ(q)

 =

 3.5 cos θ1 + 3.5 cosα+ 2 cosβ
3.5 sin θ1 + 3.5 sinα+ 2 sinβ

β

where α = θ1 + θ2 and β = θ1 + θ2 + θ3. Hence, the 3× 3 Jacobian J(q) can be

5

computed as −3.5 sin θ1 − 3.5 sinα− 2.5 sinβ −3.5 sinα− 2.5 sinβ −2 sinβ
3.5 cos θ1 + 3.5 cosα+ 2.5 cosβ 3.5 cosα+ 2.5 cosβ 2 cosβ

1 1 1

(2.2)

Note that for a planar manipulator, all entries in the third row will always be 1 the
way we defined things: the rotation rates of the joints can just be added up to obtain
the rotation rate of the end effector.

Figure 2.2: Cartesian space motion control, showing the resulting straight trajecto-
ries of the end-effector for three successive waypoints.

For a planar manipulator with three joints, i.e., n = 3, we can simply invert the
3 × 3 Jacobian J(q) to calculate the joint space velocities q̇ corresponding to a
given end-effector velocity (ẋ, ẏ, θ̇):

q̇ = J(q)−1(ẋ, ẏ, θ̇) (2.3)

Hence, to achieve a desired trajectory in Cartesian space, we can calculate the
desired velocity V at any given time, calculate the corresponding joint velocities q̇
using (2.3), and apply simple proportional control, i.e.,

qt+1 = qt +KpJ(qt)
−1(Td − T (qt)),

6

Example. An example of Cartesian motion control with proportional control is
shown in Figure 2.2 for the three-link planar robot, where we followed a sequence
of straight trajectories of the end-effector, for three successive waypoints.

3 Inverse Kinematics

Inverse kinematics (IK) is the process of finding joint angles given a desired end-
effector pose Tdesired, i.e., solve Equation 1.1 for q:

T st (q) = Tdesired

If Tdesired is outside the workspace of the robot, there is no solution, otherwise
there might be a unique solution or multiple solutions.

The essential concepts can be explained by using a two-link planar manipulator.
In this simple case, the forward kinematics are given by{

x(q) = l1 cos θ1 + l2 cos (θ1 + θ2)

y(q) = l1 sin θ1 + l2 sin (θ1 + θ2)
(3.1)

The inverse kinematics problem is then to find the joint angles q = (θ1, θ2) such
that (x(q), y(q)) = (xd, yd), the desired end-effector position.

3.1 Closed-Form Solutions

Many industrial manipulators have closed-form solutions, and there are several
ways to derive these. In this simple 2-link case above, a closed form IK solution is
possible, although generally non-unique, within a radius (l1 + l2) of the origin. I
adapted a solution from John Hollerbach’s 2008 lecture notes, for l1 = l2 = L: we
first compute the second joint angle

θ2(xd, yd) = ±2 arctan

√
(2L)2

x2
d + y2

d

− 1 (3.2)

after which we compute the first joint angle

θ1(xd, yd, θ2) = atan2(yd, xd)− atan2 (L sin θ2, L(1 + cos θ2))−
π

2
(3.3)

Note that Equation 3.2 is not defined if x2
d + y2

d > (2L)2, which corresponds to a
desired position that is out-of-range.

To extend this to the three-link example, we add a desired tool orientation, i.e.,
we have a desired 2D pose Td = (x′d, y

′
d, θ
′
d), where I used primes to distinguish

7

Figure 3.1: Two IK solutions for the planar three-link arm, for tool pose
(x′d, y

′
d, θ
′
d) = (5, 5, 0), with joint angles q = (−63.6o, 74.0o,−100.4o) and

q = (10.4o,−74.0o,−26.4o), corresponding respectively to choosing a positive
and negative sign in Equation 3.2.

from the 2-link example. Note from the forward kinematics Equation 1.2 that
β = θ′d − π/2, and we can adapt Equations3.3 and 3.2 to accommodate for the
joint 2 axis offset:

xd = x′d + 2.5 sinβ and yd = y′d − 2.5 cosβ

θ′2 = (xd, yd) and θ′1 = (xd, yd, θ
′
2)

Then, the wrist joint angle is easily computed as

θ′3 = θ′d − θ′1 − θ′2 − π/2

Figure 3.1 shows two examples corresponding to choosing a different sign in Equa-
tion 3.2 for the same desired pose (x′d, y

′
d, θ
′
d) = (5, 5, 0), illustrating the fact that

inverse kinematics is not a one-on-one mapping, but that multiple solutions might
exist, even for a non-redundant manipulator.

3.2 Iterative Methods

As discussed, many industrial manipulators have closed-form solutions, but they
are still an area of active research and general solutions are as yet elusive. There
exist, however, iterative methods to solve the IK problem.

8

One approach is to find the joint angles q that minimize the error between
desired end-effector pose and computed end-effector pose. For example, for the
simple 2-link arm we would try to minimize

E(q)
∆
=

1

2
‖pd − p(q)‖2 =

1

2
(xd − x(q))2 +

1

2
(yd − y(q))2 (3.4)

where pd ∈ R2 and p(q) ∈ R2 are the desired and computed 2D position. However,
this is a non-linear minimization problem, as x(q) and y(q) are typically non-linear
functions of the joint-angles (at least for rotational joints). Linear least-squares
problems are easier to solve, which motivates us to start with an initial guess q for
the joint angles, and to linearize the forward kinematics around this pose,

p(q + δq) ≈ p(q) + J(q)δq (3.5)

where J(q) is once again the manipulator Jacobian, derived in Section 2. For
the simple 2-link planar manipulator we can only hope achieve a desired position
pd ∈ R2, and hence the Jacobian J(q) is only a 2× 2 matrix, easily calculated as

J(q) =

[
∂x(q)
∂θ1

∂x(q)
∂θ2

∂y(q)
∂θ1

∂y(q)
∂θ2

]

=

[
−y(q) −l2 sin (θ1 + θ2)
x(q) l2 cos (θ1 + θ2)

]
Substituting the approximation 3.5 into the objective 3.4 we obtain

E(q + δq) ≈ 1

2
‖ (pd − p(q))− Jδq‖2 (3.6)

where the dependance of J on q is implied, for notational simplicity. The above
says that we can make the position error e(q) ∆

= pd−p(q) go to zero by calculating
a change δq in joint angles, such that

Jδq = pd − p(q)

For a non-redundant manipulator the Jacobian J(q) is square, and its inverse gen-
erally exists (except at the boundaries of the workspace). Hence, we could try to
invert it immediately:

δq = J−1 (pd − p(q)) (3.7)

However, because the forward kinematics are non-linear, we might have to iterate
this a few times, and the process might in fact diverge.

9

3.3 Damped Least-Squares

A safer approach is to impose some penalty for taking steps δq that are too large,
which can be done by adding a term to the objective function 3.6:

E(q + δq) ≈ 1

2
‖ (pd − p(q))− Jδq‖2 +

1

2
‖λδq‖2 (3.8)

This can be solved for δq by setting the derivative of E in Equation 3.8 to 0,

−JT ((pd − p(q))− Jδq) + λ2δq = 0

which, after simply re-arranging, leads to a damped least-squares iteration:

δq =
(
JTJ + λ2I

)−1
JT (pd − p(q)) (3.9)

The value of λ is chosen as to make the iterative process converge, and can even
be increased automatically when a low value is seen to lead to divergence. On the
other hand, too high a value might lead to slow convergence.

One strategy is to proceed very cautiously, i.e., make λ very large, in which
case Equation 3.9 essentially becomes gradient descent:

δq = λ−2JT (pd − p(q)) (3.10)

Because it only involves JT , this is also called the transpose Jacobian method,
but it has the disadvantage of converging very slowly, see Fig. 4.1.

A method that picks λ automatically is the Levenberg-Marquardt method:
start with a high λ, and then reduce it by a constant factor at every iteration until
the error goes up instead of down: in that case undo the change in λ and try again.

3.4 Iterative IK Methods Summary

In summary, all iterative inverse kinematics approaches share the same structure:

Algorithm 1 The basic iterative IK algorithm.
1: function ITERATIVEIK(xd)
2: q ← q0 . Guess an initial value for joint angles
3: while E(q) 6= 0 do . While not converged
4: e← pd − p(q) . Calculate error between desired and computed pose
5: Calculate δq = f(J(q), e) . Using Eqn. (3.7), (3.9), (3.10)
6: q ← q + δq . Update the joint angles q
7: return q . Joint angles yielding pd

10

4 Redundant Manipulators

Figure 4.1: A highly redundant planar manipulator.

One advantage of the least-squares approaches above is that they also work for
n > m, i.e., for redundant manipulators. An example of a highly redundant
planar manipulator is shown in Figure 4.1. In this case the inverse in Equation 3.7
does not exists (as J is non-square), but we can use the pseudo-inverse J†,

δq = J† (pd − p(q)) (4.1)

where J† ∆
= JT

(
JJT

)−1 for n > m.

Figure 4.2: Convergence of iterative IK with the transpose Jacobian method.

Note that for redundant manipulators the pseudo-inverse is equivalent to damped
least squares with λ = 0. Of course, even in the redundant case we can take λ to

11

be non-zero and just apply gradient descent (3.9), or make λ large in which case
we recover the transpose method (3.10). An example of the latter is shown as a
trajectory in Figure 4.2.

In a redundant manipulator there are typically an infinite number of ways to
attain a desired end-effector pose. The methods above arbitrarily pick one of the
solutions. However, the extra degrees of freedom might be put to other uses, as
well: for example, we might want to favor configurations that require less energy
to maintain, or avoid singularities, or even - in the case of using IK for animation
- follow a certain style [1]. This can be done by adding an additional, user-defined
penalty term Euser(q) to the error function that penalizes certain joint configura-
tions and favors others:

E(q)
∆
=

2 1

2
‖pd − p(q)‖2 + Euser(q)

As long as the derivative of Euser(q) is available, it is easy to incorporate this extra
information.

A simple example is to make the joint angles as small as possible, i.e., penal-
izing a deviation from the rest state, leading to

E(q)
∆
=

2 1

2
‖pd − p(q)‖2 +

1

2
‖βq‖2

After linearizing, we have

E(q + δq) ≈ 1

2
‖ (pd − p(q))− Jδq‖2 +

1

2
‖β(q + δq)‖2

which yields the following update,

δq =
(
JTJ + β2I

)−1 (
JT (pd − p(q))− β2q

)
which looks very much like the damped least-squares iteration (3.9), except that
now there is an extra error term that drives the joint angles to zero.

Finally, a user could also impose hard equality or inequality constraints. One
such constraint is that the robot should never self-intersect or collide with objects
in its environment. In dynamic environments, then, these constraints define a con-
figuration space that can change over time. We then get into the realm of fully
fledged motion planning, which is a prolific and active area of research.

12

References

[1] K. Grochow, S.L. Martin, A. Hertzmann, and Z. Popović. Style-based inverse
kinematics. In SIGGRAPH, volume 23, pages 522–531. ACM, 2004.

[2] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

13

