Transforming Twists and Wrenches with the Adjoint Map in 3D

Frank Dellaert
Institute for Robotics and Intelligent Machines
Georgia Institute of Technology

March 29, 2020

1 3D Rigid Transformations

The Lie group $S E(3)$ is a subgroup of the general linear group $G L(4)$ of 4×4 invertible matrices of the form

$$
T \triangleq\left[\begin{array}{cc}
R & t \\
0 & 1
\end{array}\right]
$$

where $R \in S O(3)$ is a rotation matrix and $t \in \mathbb{R}^{3}$ is a translation vector.
Its Lie algebra $\mathfrak{s e}(3)$ is the vector space of 4×4 twists $\hat{\mathcal{V}}$ parameterized by the twist coordinates $\mathcal{V} \in \mathbb{R}^{6}$, with the mapping [1]

$$
\mathcal{V} \triangleq\left[\begin{array}{c}
\Omega \\
v
\end{array}\right] \rightarrow \hat{\mathcal{V}} \in \mathfrak{s e}(3)=\left[\begin{array}{cc}
{[\Omega]_{\times}} & v \\
0 & 0
\end{array}\right]
$$

where $[$.$] \times denotes the skew-symmetric matrix of a 3$-vector, i.e., the $S O(3)$ operator. Note we follow Lynch \& Park's convention and reserve the first three components for rotation, and the last three for translation.

2 A Body moving in Space

For a body undergoing a constant twist \mathcal{V}^{s}, all the points p^{s} on that body are moving according to, in homogeneous coordinates:

$$
v^{s}=\widehat{\mathcal{V}^{s}} p^{s}
$$

hence in non-homogeneous coordinates:

$$
v^{s}=\Omega \times p^{s}+v
$$

Which coordinates we use should be obvious from context.

3 The Adjoint Map

Suppose we want to express the twist in the body frame B ? We start from

$$
v^{s}=\widehat{\mathcal{V}^{s}} p^{s}
$$

but we know that at any given moment $v^{s}=T_{b}^{s} v^{b}$, and $p^{s}=T_{b}^{s} p^{b}$. Substituting in, we have

$$
T_{b}^{s} v^{b}=\widehat{\mathcal{V}^{s}} T_{b}^{s} p^{b}
$$

$$
v^{b}=\left[T_{b}^{s}\right]^{-1} \widehat{\mathcal{V}^{s}} T_{b}^{s} p^{b}
$$

or, in other words

$$
\widehat{\mathcal{V}^{b}}=\left[T_{b}^{s}\right]^{-1} \widehat{\mathcal{V}^{s}} T_{b}^{s}=T_{s}^{b} \widehat{\mathcal{V}^{s}} T_{b}^{s}=T_{s}^{b} \widehat{\mathcal{V}^{s}}\left[T_{s}^{b}\right]^{-1}
$$

The last form above we call Adjoint Map, with symbol and dropping the indices for now:

$$
\begin{aligned}
A d_{T} \widehat{\mathcal{V}} & =T \widehat{\mathcal{V}} T^{-1} \\
& =\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
{[\Omega]_{\times}} & v \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
R^{T} & -R^{T} t \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
{[R \Omega]_{\times}} & -[R \Omega]_{\times} t+R v \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
{[R \Omega]_{\times}} & t \times R \Omega+R v \\
0 & 0
\end{array}\right]
\end{aligned}
$$

We recognize the last line as the hat of another twist, with $\Omega^{\prime}=R \Omega$ and $v^{\prime}=$ $t \times R \Omega+R v$. Hence, we can express the body twist \mathcal{V}^{b} in terms of the spatial twist \mathcal{V}^{s} by the Adjoint map as follows:

$$
\mathcal{V}^{b}=\left[\begin{array}{c}
\Omega^{b} \\
v^{b}
\end{array}\right]=\left[\begin{array}{cc}
R_{s}^{b} & 0 \\
{\left[t_{s}^{b}\right]_{\times} R_{s}^{b}} & R_{s}^{b}
\end{array}\right]\left[\begin{array}{c}
\Omega^{s} \\
v^{s}
\end{array}\right]
$$

We call this 6×6 matrix the Adjoint map matrix and write

$$
\mathcal{V}^{b}=\left[A d_{T_{s}^{b}}\right] \mathcal{V}^{s}
$$

and of course vice versa:

$$
\mathcal{V}^{s}=\left[A d_{T_{b}^{s}}\right] \mathcal{V}^{b}
$$

Note that there is a subtle but important distinction: $A d_{T}$ operates on 4×4 Lie algebra elements $\widehat{\mathcal{V}}$, and $\left[A d_{T}\right]$ multiplies 6×1 twist coordinates \mathcal{V}.

4 Wrenches

Wrenches \mathcal{F} are dual to twists, and so they transform inversely. The dot product of a twist and a wrench is power, and of course the power has to be the same in both spatial and body frame. Hence we have

$$
\mathcal{F}^{s T} \mathcal{V}^{s}=\mathcal{F}^{b T} \mathcal{V}^{b}
$$

and if we substitute in $\mathcal{V}^{b}=\left[A d_{T_{s}^{b}}\right] \mathcal{V}^{s}$, we obtain

$$
\mathcal{F}^{s T} \mathcal{V}^{s}=\mathcal{F}^{b T}\left[A d_{T_{s}^{b}}\right] \mathcal{V}^{s}
$$

Since this must hold for all possible twists \mathcal{V}^{s}, we have

$$
\mathcal{F}^{s T}=\mathcal{F}^{b T}\left[A d_{T_{s}^{b}}\right]
$$

or (transposing everything)

$$
\mathcal{F}^{s}=\left[A d_{T_{s}^{b}}\right]^{T} \mathcal{F}^{b}
$$

Switching the indices yields the other direction:

$$
\mathcal{F}^{b}=\left[A d_{T_{b}^{s}}\right]^{T} \mathcal{F}^{s}
$$

References

[1] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.

