Contacts

Frank Dellaert
Center for Robotics and Intelligent Machines
Georgia Institute of Technology

November 16, 2018

This note introduces kinematic constraints and forces at contacts in a unified manner across $S O(2), S O(3), S E(2)$, and $S E(3)$ by using Lie group concepts. Further references (albeit all using slightly different notation from this note and each other) are the texts by Murray, Li, and Sastry [3], Matt Mason [2] and most recently, the excellent synthesis by Lynch and Park [1].

1 Kinematic Constraints

At a contact with location p^{S} and contact normal \bar{n}, in some spatial frame S , we have a very simple constraint on the spatial velocity v^{S} at that point,

$$
\begin{equation*}
v^{S} \bar{n} \geq 0 \tag{1.1}
\end{equation*}
$$

which is true in 2D and 3D. Below we show what that means for rotating bodies in 2D and 3D, and subsequently for rigidly moving bodies in 2D and 3D.

In each case, we proceed by expressing the spatial velocity v^{S} in terms of differential twist coordinates, and then deriving a constraint on those in terms of the contact parameters p^{S} and \bar{n}.

1.1 Planar Rotations aka SO(2)

For 2D rotations, the point p^{S} describes a circular trajectory around the origin. The velocity v^{S}, in spatial coordinates, is given by

$$
\begin{equation*}
v^{S}=\hat{\omega} p^{S}=\omega p^{S \perp} \tag{1.2}
\end{equation*}
$$

where ω is the 1-dimensional angular velocity, and $\hat{\omega} \in \mathfrak{s o}(2)$ is given by

$$
\hat{\omega} \triangleq\left[\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right] .
$$

Given this, the kinematic constraint (1.1) becomes

$$
\begin{aligned}
v^{S} \bar{n} & \geq 0 \\
\hat{\omega} p^{S} \bar{n} & \geq 0 \\
\omega\left(p^{S \perp} \bar{n}\right) & \geq 0 \\
\omega m & \geq 0
\end{aligned}
$$

where $m \triangleq p^{S \perp} \bar{n}$ is defined as the moment of the contact line through the contact point p^{S}. The angular velocity ω is constrained to be either positive or negative, unless the contact normal \bar{n} is parallel to p^{S}, in which case we have a sliding contact if $\omega \neq 0$.

1.2 Rotations in 3D aka SO (3)

For 3D rotations, the spatial velocity v^{S} of a point p^{S} is given by:

$$
v^{S}=\hat{\Omega} p^{S}=\Omega \times p^{S}
$$

where Ω is the angular velocity vector and $\hat{\Omega} \in \mathfrak{s o}(3)$ is given by:

$$
\widehat{\Omega} \triangleq\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right] .
$$

Given this, the kinematic constraint (1.1) becomes

$$
\begin{aligned}
v^{S} \bar{n} & \geq 0 \\
\hat{\Omega} p^{S} \bar{n} & \geq 0 \\
\left(\Omega \times p^{S}\right) \bar{n} & \geq 0 \\
\Omega\left(p^{S} \times \bar{n}\right) & \geq 0 \\
\Omega m & \geq 0
\end{aligned}
$$

where $m \triangleq p^{S} \times \bar{n}$ is defined as the moment vector of the contact line through the contact point p^{S}. The angular velocity vector Ω is constrained to be on the positive side of the plane with normal m, unless the contact normal \bar{n} is parallel to p^{S}, in which case we have a sliding contact with non-zero Ω.

1.3 2D Rigid Transforms aka SE(2)

For 2D rigid transforms, the spatial velocity is given by

$$
v^{S}=\hat{\dot{\xi}} p^{S}=\omega p^{S \perp}+v
$$

where the 2D differential twist $\hat{\dot{\xi}} \in \mathfrak{s e}(2)$ is given by

$$
\hat{\dot{\xi}}=\left[\begin{array}{ll}
\hat{\omega} & v \\
0 & 0
\end{array}\right] .
$$

Given this, the kinematic constraint (1.1) becomes

$$
\begin{aligned}
v^{S} \bar{n} & \geq 0 \\
\hat{\dot{\xi}}^{S} \bar{n} & \geq 0 \\
\left(\omega p^{S \perp}+v\right) \bar{n} & \geq 0 \\
(m, \bar{n})^{T}(\omega, v) & \geq 0
\end{aligned}
$$

where $(m, \bar{n})=\left(p^{S \perp} \bar{n}, \bar{n}\right)$ defines the contact line, through the equation $q^{\perp} \bar{n}=$ m. The 3D twist coordinates $\xi=(\omega, v)$ are constrained to be on the positive side of the plane in 3D, with normal (m, \bar{n}). A sliding contact occurs when the twist coordinates ξ are in the plane and $v^{S} \neq 0$. A rolling contact, defined as having the spatial velocity v^{S} equal to zero for a non-zero twist, only occurs when the instantaneous rotation center $v^{S \perp} / \omega$ is equal to p^{S} :

$$
\begin{aligned}
\omega p^{S \perp}+v & =0 \\
-\omega p^{S}+v^{\perp} & =0 \\
v^{\perp} / \omega & =p^{S}
\end{aligned}
$$

Reuleaux' method is a great way to graph all possible IRCs in the plane: positive IRCs are possible to the left of the contact line, and negative to the right, both corresponding to Breaking contact. On the line, we have either Sliding, or Rolling (at the contact point). Sliding can further be subdivided in left or right sliding.

1.4 3D Rigid transforms aka SE(3)

For 3D rigid transforms, the spatial velocity is given by

$$
v^{S}=\hat{\dot{\xi}} p^{S}=\Omega \times p^{S}+v
$$

where the 3 D differential twist $\hat{\dot{\xi}} \in \mathfrak{s e}(3)$ is given by

$$
\hat{\dot{\xi}}=\left[\begin{array}{cc}
\hat{\Omega} & v \\
0 & 0
\end{array}\right]
$$

Given this, the kinematic constraint (1.1) becomes

$$
\begin{aligned}
v^{S} \bar{n} & \geq 0 \\
\hat{\dot{\xi}}^{S}{ }^{S} \bar{n} & \geq 0 \\
\left(\Omega \times p^{S}+v\right) \bar{n} & \geq 0 \\
(m, \bar{n})^{T}(\Omega, v) & \geq 0
\end{aligned}
$$

where $(m, \bar{n})=\left(p^{s} \times \bar{n}, \bar{n}\right)$ defines the contact line, through the equation $q \times \bar{n}=$ m. The 6-dimensional vectors (m, \bar{n}) to represent lines in 3D are also known as the Plücker coordinates of a 3 D line. The twist coordinates $\xi=(\Omega, v)$ are constrained to be on the positive side of the hyperplane in 6 D with equation $(m, \bar{n})^{T} \xi=0$. A sliding contact occurs when the twist coordinates ξ are in the plane and $v^{S} \neq 0$. A rolling contact occurs when $\xi \neq 0$ and

$$
v^{S}=\Omega \times p^{S}+v=0
$$

2 Friction

The above was a kinematic account. To discuss frictional contacts and force closure we closely follow Murray et al [3], modulo some notation differences. In particular, we will arrive at the following concise result: the set F_{B} of possible wrenches applied to the body B is given by

$$
F_{B}=\{G f \mid f \in F C\}
$$

where G is the $n \times m$ grasp map, and $f \in \mathbb{R}^{m}$ are set of possible forces, which lie inside a friction cone $F C$.

To see this, we will classify each of k contacts into different contact types, and for each contact c_{i} we model the contacts in their contact frame T_{i}^{b} as

$$
\mathcal{F}_{i}=B_{i} f_{i}
$$

where B_{i} is a wrench basis, and $f_{i} \in F C_{i}$ are the contact forces lying inside the contact's friction cone F_{i}. Below we assume that the contact frame is chosen such that the origin coincides with the point of contact, and the z-axis coincides with the contact normal. For spatial bodies, there are three different contact types we will consider [3]:

- Frictionless point contact:

$$
B_{i}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], F C_{i}=\left\{f_{1} \geq 0\right\}
$$

- Point contact with friction:

$$
B_{i}=\left[\begin{array}{lll}
& & \\
& & \\
& & \\
& 1 & \\
& & 1
\end{array}\right], F\left\{C_{i}=\sqrt{f_{1}^{2}+f_{2}} \leq \mu f_{3}, f_{3} \geq 0\right\}
$$

- Soft-finger (note, f_{4} below has units of torque, not force):

$$
B_{i}=\left[\begin{array}{ccccc}
& & & \\
& & & & \\
1 & & & 1 \\
& 1 & & \\
& & 1 &
\end{array}\right], F C_{i}=\left\{\sqrt{f_{1}^{2}+f_{2}} \leq \mu f_{3}, f_{3} \geq 0, f_{4} \leq \gamma f_{3}\right\}
$$

Expressing the wrench \mathcal{F}_{i} applied by contact i in the body frame yields

$$
\mathcal{F}_{b}=\left[A d_{T_{b}^{c}}\right]^{T} \mathcal{F}_{i}=\left[A d_{T_{b}^{c}}\right]^{T} B_{i} f_{i}=G_{i} f_{i}
$$

Then the grasp map G and the generalized friction cone $F C$ are given by

$$
G=\left[G_{1} \ldots G_{k}\right], F C=F C_{1} \cup \ldots \cup F C_{k}
$$

and the set F_{B} of possible wrenches applied by the contacts is given by

$$
F_{B}=\{G f \mid f \in F C\}
$$

References

[1] Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University Press, 2017.
[2] Matthew T Mason. Mechanics of robotic manipulation. 2001.
[3] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.

