
Assignment 1: ROS, Gazebo, and Fetch

January 23, 2020

This is our �rst assignment which helps you get started and familiar with
ROS and Gazebo, while running the Fetch robot in simulation. Follow the
instructions below to install and run several scripts. At several points you will
be asked to take screenshots and videos of your results and to receive full credits
you need to upload a zip/tar.gz �le containing the 4 images and 3 short videos,
less than 30 seconds each (only keep the most related part to requirements) and
upload them through Canvas.

If your computer is already equipped with:

• ROS indigo and Ubuntu 14.04

• ROS Medolic and Ubuntu 18.04.

Feel free to your own device. If you do not have any of these two systems, we will
provide a Docker instance with ROS indigo and Ubuntu 14.04 (A quick tutorial
handout about Docker will be given to help you set up). This homework is based
on two main tutorials, ROS general topics can be found at http://wiki.ros.
org/ROS/Tutorials, while the detailed tutorial by Fetch Robotics on which
this assignment is based can be found at http://docs.fetchrobotics.com/

gazebo.html.

Part I

Required Installation

For this course, we will use the Fetch Robot as our simulated mobile manipula-
tor. The Fetch robot was developed under ROS indigo and Ubuntu 14.04, but
has an stable and working version for ROS melodic and Ubuntu 18.04.

1 Install ROS

If you have a computer with Ubuntu 14.04 or 18.04, you should be able to install
and run all the required elements on your machine. If you don't have a machine
with any of this systems, we will provide a docker image with Ubuntu 14.04 and
ROS indigo. The instructions to install ROS in Ubuntu 14.04 can be found at

1

• http://wiki.ros.org/indigo/Installation

while the instructions for Ubuntu 18.04 can be found at

• http://wiki.ros.org/melodic/Installation.

For this course, we will use the ROS indigo distribution as our base line, there
will be several parts throughout the course, where we will ask you to install
ROS packages such as

$ sudo apt-get install ros-indigo-fetch-gazebo-demo

It can be seen that the name of the package has the following format: ros-
$distro$-package_name. If you are using ROS melodic distribution, you will
have to change the command too

$ sudo apt-get install ros-melodic-fetch-gazebo-demo

2 Install the Fetch Robot

Once ROS indigo and Ubuntu 14.04 have been installed for you. The next
step is to install the Fetch simulator. Open a command-line shell and type the
following commands

$ sudo apt-get update

$ sudo apt-get install ros-indigo-fetch-gazebo-demo

This installs the package that contains some interesting demos.

Part II

Simulation

3 Start simulation in Gazebo

Start the simulator and generate a Fetch robot in simulation environment, by

$ roslaunch fetch_gazebo simulation.launch

The �rst time you launch this, it will take some time to obtain the model from
website. Hence, if the process fails or takes a long time, press Ctrl+C to quit
and relaunch again.

Watch the results and observe the Fetch robot.

2

4 Visualize in Rviz

Open a new shell (don't close the previous one) to visualize the Fetch robot via
the ROS visualization application �rviz�. You can manually set up your rviz
visualization or use a prede�ned con�guration �le.

4.1 Manually set up

Type the following command line to start rviz,

$ rosrun rviz rviz

Probably you can't see anything in rviz at the beginning.

1. Click 'Add' at bottom left corner -> Under 'By display type' tab choose
'RobotModel', add it -> on left panel of rviz, change the 'Fixed Frame'
from 'map' to 'base_link', you should see the Fetch robot in rviz now.

2. Add the 'TF' to visualize transformation frame, 'LaserScan' for visualizing
laser , and 'PointCloud2' to generate point cloud of environment.

3. Click the left triangular button near 'LaserScan', then click the area right
to the 'Topic' item, choose '/base_scan' topic to visualize the laser scan.

4. Similarly, change the topic of 'PointCloud2' as '/head_camera/depth_downsample/points'.
You should see a grey area generated in front of Fetch

5. Try to add some objects into your simulation world by clicking di�erent
icons on top panel in Gazebo. Left click the icon, for example a sphere,
and left click the area in front of Fetch to add that 3D sphere into your
simulation world.

6. The result may be similar like this(with a sphere in front of Fetch). Take
a screenshot of your simulation.

• Exercise 1: Take a screen shot of Fetch robot with TF, laser scan(red) and
point clouds(white).

3

4.2 Use prede�ned con�guration �le

Instead of doing this manually, you can load default .rviz con�guration �le for
Fetch. Use roscd again to navigate to the fetch_navigation/con�g directory and
load the rviz �le.

$ roscd fetch_navigation/config

$ rviz -d navigation.rviz

On the left panel, change the 'Fixed Frame' from 'map' to 'base_link', follow
the instructions in 4.1 to change topics for visualization, and take a screen shot
of your simulation. This time you will have 2 extra items added to the left panel,
'Map' and 'Local Costmap', we will skip this part and discuss it in navigation
part.

• Exercise 2: Take a screen shot of Fetch robot with your simulation world
and corresponding rviz window[default con�guration �le].

5 Running mobile manipulation demo

This is a demo showing how navigation, perception and Moveit! work together
to achieve some complex task. Use the following lines to run this demo.

• Open a new shell (make sure you already quit the previous ones),

$ roslaunch fetch_gazebo playground.launch

4

• To start the simulation in gazebo. Open a new shell and use the following
line to run the demo. You could see the Fetch robot search for object and
navigate itself towards the table, it will stop in front of the blue cube and
try to pick it up.

$ roslaunch fetch_gazebo_demo demo.launch

• Open a new shell, you can use rviz to visualize this process. Use the same
command to open the window and change the corresponding topics as
previous steps.

$ rosrun rviz rviz

• Exercise 3: Take a screen shot of Fetch robot in gazebo, your simulation
might look like the following picture.

Part III

Create our own Project

Until now, we have just executed prebuilt programs to see and interact with the
basic tools of Gazebo and Rviz. Now, we will create our own project.

6 Creating a catkin workspace

The catkin is the o�cial build system, which is responsible for generating tar-
gets, including libraries, executable programs etc. The �rst step is to create a
catkin workspace . Open a shell, type following command,

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws

$ catkin_make

On the screen, you should see output like this if everything goes well (might be
slightly di�erent based on your virtual machine):

5

...

catkin 0.6.19

BUILD_SHARED_LIBS is on

Configuring done

Generating done

Build files have been written to: /home/student/catkin_ws/build

When it is done, you should see new folders devel and build in the catkin_ws
directory. Take a look at http://wiki.ros.org/catkin/Tutorials/create_
a_workspace if you need more details.

7 Creating ROS packages

7.1 Creating a new package

ROS uses packages to organizes functionality. All your �les for a ROS program
should be included in a package, including cpp/python �les, launch �les, con-
�guration �les etc. Under the catkin workspace directory catkin_ws there are
three subdirectories: devel, src and build. To create a new catkin package, we
use

catkin_create_pkg <package_name> <package_dependecies>

where package_name is the name of the package that you want to create, and
package_dependecies are those packages which your package depends on. For
more details about package creation, see http://wiki.ros.org/ROS/Tutorials/
CreatingPackage

For this assignment, use the following command,

$ cd ~/catkin_ws/src

$ catkin_create_pkg assignment1 std_msgs roscpp rospy

7.2 Compiling a package

You need to compile the src directory before using the package you create. This
command should be executed under catkin_ws directory.

$ cd ~/catkin_ws

$ catkin_make

This updated the build products in the build directory to now include the as-
signment1 package.

7.3 Organizing your package

If you go to your newly created package

6

$ cd ~/catkin_ws/src/assignment1

You will have the basic structure of your package. You should now have 2
folders: src, include, and two �les: CMakeLists.txt and package.xml. This is the
fundamental structure of a ROS package. The src and include folder contain
all source �les, such as python and cpp �les. The �le CMakeLists.txt contains
cmake rules for compilation, and package.xml provides information about the
package and its dependencies.

ROS has several di�erent elements such as con�guration �les, launch �les,
rosbag �les between others. It is customary to create a separate folder for each
type of �le.

In your package,

7.3.1 Launch �les

Launch �les, are a script that will point to one or several other scripts to start
and initialize. First we need to create a new folder launch in the package you
created.

$ cd ~/catkin_ws/src/assignment1

$ mkdir launch

Let us �rst consider a simple example of what a launch �le looks like. A
good example is the �le build_map.launch in the fetch_navigation package,
which is available at https://github.com/fetchrobotics/fetch_ros/blob/
melodic-devel/fetch_navigation/launch/build_map.launch

<launch>

<node pkg=�slam_karto� type=�slam_karto�

name=�slam_karto� output=�screen�>

<remap from =�scan� to=�base_scan�/>

</node>

</launch>

We only focus on the <launch> and <node> tags in this �le. Every launch
�le starts with a <launch> tag, and inside the launch tag we add other tags
and parameters. In the <node> tag, we usually set values for four important
parameters. pkg is the name of the package that we want to execute, type is
the program �le we want to execute, name is the name of node we will launch,
and output speci�es where we want to print the output. To explain it in a more
concise way,

<node pkg=�PKG_NAME� type=�PROG_FILE� name=�NODE_NAME�

output=�WHERE_TO_PRINT�>

Hence, the example launch �le above launches a node called slam_karto, ex-
ecutes the slam_karto.cpp program in a package called slam_karto, and out-
puts are printed on screen. For more details about slam_karto, see https:

//github.com/ros-perception/slam_karto/tree/indigo-devel/src

7

7.3.2 Con�guration �les

Previously, we tried to set up rviz manually, and we also tried to load the default
rviz con�guration �le for visualization. Setting up manually every time we
launch a new rviz window is time-consuming, and the default rviz con�guration
may not visualize the topics we want. One of the ways to handle this, is to set
up and save your own rviz con�guration �le and load it when you run rviz.

• First create a con�g folder in your assignment1 package. We will save
your rviz �le in that folder.

$ cd ~/catkin_ws/src/assignment1

$ mkdir config

• Then, start the Fetch simulator using command,

$ roslaunch fetch_gazebo playground.launch

• Second, run build_map.launch in fetch_navigation package,

$ roslaunch fetch_navigation build_map.launch

• Third, run rviz and set up manually, in addition to the components we
mentioned in last assignment, we also need 'map', and 'image' if you are
interestd seeing pictures taken by Fetch's head camera. Your rviz window
should look similar to this (feel free to add other components you want,
but all components mentioned above are required), for each component,
the corresponding topics are shown below.

$ rosrun rviz rviz

1. 'Global Options' -> 'Fixed Frame' -> map

2. 'LaserScan' -> 'Topic' -> /base_scan

3. 'PointCloud2' -> 'Topic' ->/head_camera/depth_downsample/points

4. 'Map' -> 'Topic' -> /map

5. 'Image' -> Image topic -> 'head_camera/rgb/image_raw'

• Click the top left menu, click -> [File] -> [Save Con�g As] -> /stu-
dent/catkin_ws/src/assignment1/con�g -> name it as assignment1.rviz

• Quit rviz (DO NOT quit your gazebo simulator), let's try to set up rviz
by using our own con�guration �le. Open a new shell, use the following
command (remember to change the directory if you are using your own
computer)

$ rosrun rviz rviz -d ~/catkin_ws/src/assignment1/config/assignment1.rviz

8

• Make sure your gazebo simulator and build_map.launch are still running
when you load the rviz �le, otherwise there will be status errors in rviz.

Your result may look like this:

7.4 Nodes, topics, message, subscriber & publisher

For other basic concepts of ROS, please go through tutorials on website, which
provides a detailed explanation of each concept and their functions. This as-
signment will not cover these concepts.http://wiki.ros.org/ROS/Tutorials

Part IV

Mapping

8 Keyboard Teleop

To build the map, we need to move the Fetch robot around the room to 'see'
the layout of the room. Here comes the most exciting part! We can use our
keyboard to control Fetch robot to hang around room and see the details of
room. This is where the ROS structure comes to play. When we launched the
simulated robot, it opens Gazebo and creates a Fetch robot. This robot will
subscribe to topics such as, velocity commands which he can execute by turning
its wheels and will publish topics such as, laser _scan which other script can
use to reconstruct the world (mapping) around the robot.

8.1 Teleop your Fetch robot

To do this, �rst look at tutorial about Robot Teleop on http://docs.fetchrobotics.
com/teleop.html and follow the steps below to create a launch �le for tele-

9

operation:

• Under ~/catkin_ws/src/assignment1/src directory, create a python �le
named keyboard_teleop.py.

• Simply copy the teleop_twist_keyboard code on https://github.com/

ros-teleop/teleop_twist_keyboard/blob/master/teleop_twist_keyboard.

py into the python �le you just created and save it.

• Under ~/catkin_ws/src/assignment1/launch directory, create a launch
�le called teleop.launch

• In teleop.launch, copy or type the following code:

<launch>

<node pkg=�assignment1� type=�keyboard_teleop.py� name=�fetch_teleop� output=�screen�>

</node>

</launch>

(NOTE: Sometimes when copying into using nano or gedit, the quotation marks
are not copyed correctly, which will throw an error when trying to compile.)

Now that we have a launch �le, we can run it. Open a new shell, and type

$ roslaunch assignment1 teleop.launch

After doing this, you should be able to control the fetch using the I,J,K, and
L keys. The instructions show the other keys you can use to control the speed
etc.

8.2 Common issues

• When you roslaunch teleop.launch, you may see this error message: can-
not launch node of type[assignment1/keyboard_teleop.py]: can't locate
node [keyboard_teleop.py] in package [assignment1]. To �x this, use the
following command,

$ cd ~/catkin_ws/src/assignmetn1/src

$ chmod +x keyboard_teleop.py

The reason for this is that if your python �le may be created without execu-
tion permissions and ROS cannot �nd those �les. You can give permissions to
those �les by typing the above command. If you are interested in this, more de-
tails about this could be found on https://stackoverflow.com/questions/

41843622/changing-python-file-permission-with-chmod-x

• If you see any error message like this: [SOME_FILE] is not a launch
�le. [SOME_PKG] is neither a package or a launch �le. One possi-
ble solution is using source command or add it to your ~/.bashrc �le so
you don't need to type this everytime you open a new shell, more de-
tails could be found on https://answers.ros.org/question/206876/

how-often-do-i-need-to-source-setupbash/

10

$ cd ~/catkin_ws

$ source devel/setup.bash

9 Building a map!

9.1 Create a mapping launch �le

So far we have created several separate shells for each command we used, and it
might be di�cult to organize if we have more and more shell windows. Instead,
combining several commands in one launch �le is a better way. We will do this
below for teleop, visualization, and mapping.

Create a launch �le namedmapping.launch under ~/catkin_ws/src/assignment1/launch.
edit the �le mapping.launch, and copy or type the following commands:

<launch>

<include file=�$(find fetch_navigation)/launch/build_map.launch�>

</include>

<node pkg=�assignment1� type=�keyboard_teleop.py�

name=�Fetch_teleop� output=�screen�>

</node>

<node pkg=�rviz� type=�rviz� name�$(anon rviz)�

args=�-d $(find assignment1)/config/assignment1.rviz�>

</node>

</launch>

This launch �le creates two nodes, one for teleop, and one for visualization. But
the real magic happens in the �rst line, where the build_map.launch �le from
the fetch_navigation package is included. Remember that we looked at that �le
in Section 7.3.1, and saw that it in turn launches the slam_karto node, which
will do the actual mapping based on the robot's (simulated) measurements.

9.2 Move the Fetch to build the map

Keep the simulator running and close all previous shells (except the one for
gazebo simulation). Open a new shell and type the following command:

$ roslaunch assignment1 mapping.launch

Now move the Fetch robot around to build the map! As before, follow the
information and instructions printed in the shell to control the Fetch, make sure
the shell running mapping.launch is focused. Use your keyboard to move Fetch
robot around. It may take a while to build a complete map of the room. Your
result may look like this,

• Exercise 4: Move your robot around the room and record a video of your
mapping simulation, the length should be less than 30 seconds.

11

9.3 Save map �le

When you �nish the map building process (your rviz window should look similar
to the pictures shown above), create a new folder map in assignment1 package.
Open a new shell, type the following command to save your map. This command
will generate 2 �les in map folder, a pgm �le and a yaml �le. For more details
about generating and saving maps, http://wiki.ros.org/map_server

$ rosrun map_server map_saver -f ~/catkin_ws/src/assignment1/map/playground

Part V

Localization

Now that we have a map and a robot, we need to be able to localize the robot
in the map to �nd its position and orientation.

10 Create a launch �le for navigation

In the Fetch robot tutorial, there is a launch �le called fetch_nav.launch in the
fetch_navigation package. Take a look at the code of this launch �le, https://
github.com/fetchrobotics/fetch_ros/blob/melodic-devel/fetch_navigation/

launch/fetch_nav.launch In this assignment, we only need to replace the
value of map_�le with our own map. Create a new launch �le named naviga-
tion.launch in ~/catkin_ws/src/assignment1/launch folder. In navigation.launch,
type the following code,

<launch>

12

<include file=�$(find fetch_navigation)/launch/fetch_nav.launch�>

<arg name=�map_file�

value=�/home/student/catkin_ws/src/assignment1/map/playground.yaml�/>

</include>

<node pkg=�rviz� type=�rviz� name=�$(anon rivz)�

args=�-d $(find assignment1)/config/assignment1.rviz�>

</node>

</launch>

Open a new shell and run this launch �le, you should keep gazebo simulator
running at the same time.

$ roslaunch assignment1 navigation.launch

If everything goes well, you should see something like the following picture,
this result is based on previous steps, if you skip previous steps and get a very
di�erent result (if there are status errors in rviz or you fail to visualize the Fetch
robot), please go back to previous parts and carefully double check your �les
and directories.

11 See more in Rviz

11.1 update rviz con�guration

We could visualize more topics in rviz by adding some new components related
to navigation. One is the path planner for Fetch, including the global path plan
and the local path plan, the other one is the pose array(particles) from amcl
node we launch.

• Add PoseArray -> Topic -> /particlecloud, you should see many red ar-
rows around Fetch after you subscribe to the /particlecloud topic

13

• Add Path -> Topic -> /move_base/TrajectoryPlannerROS/global_plan

• Save the new rviz con�guration under con�g folder , name it as nav-
igation.rviz. Click the top left menu, click -> [File] -> [Save Con�g
As] -> /student/catkin_ws/src/assignment1/con�g -> name it as nav-
igation.rviz

11.2 Robot localization

Adaptive Monte Carlo Localization helps robot to localize itself while moving.
At the beginning, amcl will spread particles throughout the map uniformly.
While robot moves, it will detect landmarks/objects which could help it localize
itself autonomously. More information about amcl could be found on http:

//wiki.ros.org/amcl Follow these steps to see how it works,

• Open a shell, type rosnode info /amcl and look for a service called global_localization

• Type rosservice info global_localization to see more detailed information
about this service

• Type rosservice call global_localization and see what happens in rviz

• There are red arrows uniformly spread on the map, right? Now open a
new shell and type roslaunch assignment1 teleop.launch

• Move (both rotation and translation) Fetch robot to see how those red
arrows change

• Exercise 5: Follow these steps, move your robot and record a video to
show how particles (red arrows) change. The expected result is that all
red arrows will eventually gather around Fetch robot. The length of the
video should be less than 30 seconds.

14

Part VI

Navigation

The last part will let you implement navigation of Fetch robot in gazebo and
rviz.

12 Fetch navigation in rviz

First we update the rviz con�g �le we use. Open navigation.launch, change the
args value to �-d $(�nd assignment1)/con�g/navigation.rviz�. Keep running
gazebo simulator. Close all previous shells, open a new shell and type,

$ roslaunch assignment1 navigation.launch

On the top menu there is a button called 2D Nav Goal. Click this button and
choose a random point on map, release the mouse, the robot will autonomously
navigate itself to the goal.

In the fetch_nav.launch �le, it will �rst launch a ROS node move_base,
which provides interfaces for con�guring, interacting with navigation stack on
a robot. The name of plugin for the global planner to use with move_base is
base_global_planner. The default value of base_global_planner is navfn/NavfnROS.
This planner uses Dijkstra's algorithm to compute the navigation function. Now
you can enjoy playing with navigation and record a video for your Fetch robot!

• Exercise 6: Record a video (< 30 seconds) to show navigation process.

15

