
1 SLAM with LIDAR Measurements

Motivation

1.1 LIDAR Sensors

TBD See slides.

1.2 Localization via ICP

TBD See slides.

1.3 PoseSLAM

SLAM is Simultaneous Localization and Mapping. In the SLAM problem the goal is to
localize a robot using the information coming from the robot’s sensors. The additional wrinkle in
SLAM is that we do not know the map a priori, and hence we have to infer the unknown map
simultaneously with localization with respect to the evolving map.

PoseSLAM is a variant of SLAM that uses pose constraints as the basic building block, and
where we optimize over the unknown vehicles poses. We do not explicitly optimize over a map: that
is reconstructed after the fact.

To represent the pose of a vehicle, recall that 2D poses T .
= (x, y, θ) form the Special Euclidean

group SE(2), and can be represented by 3× 3 matrix of the form

T =

 cos θ − sin θ x
sinθ cos θ y

0 0 1

 =

[
R t
0 1

]
(1)

with the 2 × 1 vector t representing the position of the vehicle, and R the 2 × 2 rotation matrix
representing the vehicle’s orientation in the plane.

Note that this representation generalizes equally to three dimensions, but of course t will be a
three-vector, and R will be a 3× 3 rotation matrix representing the 3DOF attitude of the vehicle.
The latter can be decomposed into roll, pitch, and yaw, if so desired.

The PoseSLAM problem is then:

given a set of noisy relative measurements or pose constraints T̃ij , recover the optimal
set of poses T ∗i that maximizes the posteriori probability, i.e., recover the MAP solution.

In the case of mapping for autonomous driving, these relative measurements can be derived from
performing ICP between overlapping scans. We can use GPS and/or IMU measurements to decide
which scans overlap, so that we do not have to compare O(n2) scans. Depending on the situation,
we can optimize for 3D or 2D poses, in the way we will discus below. Afterwards, we can reconstruct
a detailed map by transforming the local LIDAR scans into the world frame, using the optimized
poses T ∗i .

1.4 The PoseSLAM Factor Graph

In our factor-graph-based view of the world, a pose constraint is represented as a factor. As before,
the factor graph represent the posterior distribution over the unknown pose variables T = {T1 . . . T5}
given the known measurements:

φ(T) =
∏
i

φi(Ti). (2)

1

The factor graph encodes which factors are connected to which variables, exposing the sparsity
pattern of the corresponding estimation problem.

T1 T2 T3

T4T5

f0(T1) f1(T1, T2) f2(T2, T3)

f3(T3, T4)

f4(T4, T5)

f5(T5, T2)

Figure 1: PoseSLAM factor graph example.

An example is shown in Figure 1. The example represents a vehicle driving around, and taking
LIDAR scans at 5 different world poses, represented by T1 to T5. The factors f1 to f4 are binary
factors representing the pose constraints obtained by matching successive LIDAR scans. The factor
f5(T5, T2) is a so-called “loop closure” constraint: rather than derived from two successive scans,
this one is derived from matching the scan taken at T5 with the one at T2. Detecting such loops
can be done through a variety of means. The final, unary factor f0(T1) is there to “anchor” the
solution to the origin: if it is not there, the solution will be undetermined. Another way to anchor
the solution is to add unary factors at every time-step, derived from GPS.

Finding the MAP in the case that variables are continuous and measurements are linear combi-
nations of them can be done via least-squares. Above we have discussed MAP inference for discrete
variables, and we have discussed probability distributions for continuous variables, but we have
never put the two together. In the case of measurements corrupted by zero-mean Gaussian noise,
we can recover the MAP solution by minimization. Recall that a multivariate Gaussian density
with mean µ and variance σ2 is given by

N (x;µ, σ2) =
1√

2πσ2
exp

{
−1

2

(
x− µ
σ

)2
}
. (3)

If we focus our attention in PoseSLAM on just the x coordinates, then we predict relative measure-
ments x̃ij by

x̃ij ≈ h(xi,xj) = xj − xi
and each factor in Figure 1 could be written as

φ(xi, xj) =
1√
2π

exp

{
−1

2
(xj − xi − x̃ij)2

}
, (4)

where we assumed σ = 1 for now. By taking the negative log, maximizing the posterior corresponds
to minimizing the following sum of squares, where sum ranges over all (i, j) pairs for which we have
a pairwise measurement:

X ∗ = arg min
X

∑
k

1

2
(h(xi, xj)− x̃ij)2 = arg min

X

∑
k

1

2
(xj − xi − x̃ij)2 .

2

Linear least squares problems like these are easily solved by numerical computing packages like
MATLAB or numpy.

Unfortunately, in the PoseSLAM case we cannot use linear least squares, because poses are not
simply vectors, and the measurements are not simply linear functions of the poses. Indeed, in Pos-
eSLAM both the prediction h(Ti, Tj) and the measurement T̃ij are relative poses. The measurement
prediction function h(.) is given by

h(Ti, Tj) = T−1
i Tj

and the measurement error to be minimized is

1

2

∥∥∥log
(
T̃−1
ij T−1

i Tj

)∥∥∥2
(5)

where log : SE(2)→ R3 denotes a map from SE(2) to a three-dimensional local coordinate vector
ξ, which will be defined in detail below.

1.5 Nonlinear Optimization for PoseSLAM

There are two ways out of the nonlinear quandary. The first is to realize that the only non-linearities
stem from the sin and cos terms in the poses, associated with the unknown orientations θi. Hence,
one solution is to try and solve for the orientations first, and then solve for the translations using
linear least squares, exactly as above. This approach is known as rotation averaging followed by
linear translation recovery. Unfortunately it is sub-optimal as it does not consider the orientation
and translation simultaneously. However, it can serve to provide a (very) good initial estimate for
nonlinear optimization, discussed below.

Indeed, we will prefer to take a second route, which is to use nonlinear optimization. As
discussed, the error expressions (5) are nonlinear, and we cannot directly optimize over the poses
Ti. Instead, we will locally linearize the problem and solve the corresponding linear problem using
least-squares, and iterate this until convergence. We do this by, at each iteration, parameterizing a
pose T by

T ≈ T̄∆(ξ) (6)

where ξ are 3D local coordinates ξ .
= (δx, δy, δθ) and the incremental pose ∆(ξ) ∈ SE(2) is defined

as

∆(ξ) =

 1 −δθ δx
δθ 1 δy

0 0 1


which you can recognize as a small angle approximation of the SE(2) matrix (1). In 3D the local
coordinates ξ are 6-dimensional, and the small angle approximation is defined as

∆(ξ) =


1 −δθz δθy δx
δθz 1 −δθx δy
−δθy δθx 1 δz

0 0 0 1


With this new notation, we can approximate the nonlinear error (5) by a linear approximation:

1

2

∥∥∥log
(
T̃−1
ij T−1

i Tj

)∥∥∥2
≈ 1

2
‖Aiξi +Ajξj − b‖2 . (7)

For SE(2) the matrices Ai and Aj are the 3 × 3 or Jacobian matrices and b is a 3 × 1 bias
term. The above provides a linear approximation of the term within the norm as a function of

3

the incremental local coordinates ξi and ξj . Deriving the detailed expressions for these Jacobians
is beyond the scope of this document, but suffice to say that they exist and not too expensive to
compute. In three dimensions, the Jacobian matrices are 6× 6 and 16× 6, respectively.

The final optimization will—in each iteration—minimize over the local coordinates of all poses
by summing over all pose constraints. If we index those constraints by k, we have the following
least squares problem:

Ξ∗ = arg min
Ξ

∑
k

1

2
‖Akiξi +Akjξj − bk‖2 (8)

where Ξ
.
= {ξi} , the set of all incremental pose coordinates.

After solving for the incremental updates Ξ, we update all poses using equation 6 and check
for convergence. If the error does not decrease significantly we terminate, otherwise we linearize
and solve again, until the error converges. While this is not guaranteed to converge to a global
minimum, in practice it does so if there are enough relative measurements and a good initial estimate
is available. For example, GPS can provide us with a good initial estimate. However, especially in
urban environments GPS can be quite noisy, and it could happen that the map quality suffers by
converging to a bad local minimum. Hence, a good quality control process is absolutely necessary
in production environments.

For SLAM we typically use specializes packages such as G2O, Ceres, or GTSAM that exploit the
sparsity of the factor graphs to dramatically speed up computation. Note that MATLAB and/or
numpy can solve sparse least squares problems: the specialized SLAM packages simply provide the
translation as well as the calculation of the Jacobian matrices above.

In summary, the algorithm for nonlinear optimization is

• Start with an initial estimate T 0

• Iterate:

1. Linearize the factors 1
2

∥∥∥log
(
T̃−1
ij T−1

i Tj

)∥∥∥2
≈ 1

2 ‖Aiξi +Ajξj − b‖2

2. Solve the least squares problem Ξ∗ = arg minΞ
∑

k
1
2 ‖Akiξi +Akjξj − bk‖2

3. Update T t+1
i ← T t

j∆(ξi)

• Until the nonlinear error J(T)
.
=
∑

k
1
2

∥∥∥log
(
T̃−1
ij T−1

i Tj

)∥∥∥2
converges.

1.6 Optimization with GTSAM

The GTSAM toolbox (GTSAM stands for “Georgia Tech Smoothing and Mapping”) toolbox is a
BSD-licensed C++ library based on factor graphs, developed at the Georgia Institute of Technology
by myself, many of my students, and collaborators. It provides state of the art solutions to the
SLAM and SFM problems, but can also be used to model and solve both simpler and more complex
estimation problems. More information is available at http://gtsam.org.

GTSAM exploits sparsity to be computationally efficient. Typically measurements only provide
information on the relationship between a handful of variables, and hence the resulting factor graph
will be sparsely connected. This is exploited by the algorithms implemented in GTSAM to reduce
computational complexity. Even when graphs are too dense to be handled efficiently by direct
methods, GTSAM provides iterative methods that are quite efficient regardless.

4

The following C++ code, included in GTSAM as an example, creates the factor graph from
Figure 1 in code:

1 NonlinearFactorGraph graph;
2 auto priorNoise = noiseModel :: Diagonal :: Sigmas ((Vector(3)<< 0.3, 0.3, 0.1));
3 graph.add(PriorFactor <Pose2 >(1, Pose2 (0,0,0), priorNoise));
4

5 // Add odometry factors
6 auto model = noiseModel :: Diagonal :: Sigmas ((Vector(3)<< 0.2, 0.2, 0.1));
7 graph.add(BetweenFactor <Pose2 >(1, 2, Pose2(2, 0, 0), model));
8 graph.add(BetweenFactor <Pose2 >(2, 3, Pose2(2, 0, M_PI_2), model));
9 graph.add(BetweenFactor <Pose2 >(3, 4, Pose2(2, 0, M_PI_2), model));

10 graph.add(BetweenFactor <Pose2 >(4, 5, Pose2(2, 0, M_PI_2), model));
11

12 // Add pose constraint
13 graph.add(BetweenFactor <Pose2 >(5, 2, Pose2(2, 0, M_PI_2), model));

Listing 1: Building a graph in C++

Lines 1-4 create a nonlinear factor graph and add the unary factor f0(T1). As the vehicle travels
through the world, it creates binary factors ft(Tt, Tt+1) corresponding to odometry, added to the
graph in lines 6-12 (Note that M_PI_2 refers to pi/2). But line 15 models a different event: a
loop closure. For example, the vehicle might recognize the same location using vision or a laser
range finder, and calculate the geometric pose constraint to when it first visited this location. This
is illustrated for poses T5 and T2, and generates the (red) loop closing factor f5(T5, T2).

1.7 Using the python Interface

GTSAM It also provides both a MATLAB and a python interface which allows for rapid prototype
development, visualization, and user interaction. The python library can be imported directly into
a Google colab via “import gtsam”. A large subset of the GTSAM functionality can be accessed
through wrapped classes from within python . The following code excerpt is the python equivalent
of the C++ code in Listing 1:

1 graph = gtsam.NonlinearFactorGraph ()
2 priorNoise = gtsam.noiseModel_Diagonal.Sigmas(vector3 (0.3, 0.3, 0.1))
3 graph.add(gtsam.PriorFactorPose2 (1, gtsam.Pose2(0, 0, 0), priorNoise))
4

5 # Create odometry (Between) factors between consecutive poses
6 model = gtsam.noiseModel_Diagonal.Sigmas(vector3 (0.2, 0.2, 0.1))
7 graph.add(gtsam.BetweenFactorPose2 (1, 2, gtsam.Pose2(2, 0, 0), model))
8 graph.add(gtsam.BetweenFactorPose2 (2, 3, gtsam.Pose2(2, 0, pi /2), model))
9 graph.add(gtsam.BetweenFactorPose2 (3, 4, gtsam.Pose2(2, 0, pi /2), model))

10 graph.add(gtsam.BetweenFactorPose2 (4, 5, gtsam.Pose2(2, 0, pi /2), model))
11

12 # Add the loop closure constraint
13 graph.add(gtsam.BetweenFactorPose2 (5, 2, gtsam.Pose2(2, 0, pi /2), model))

Listing 2: Building a graph in python

Note that the code is almost identical, although there are a few syntax and naming differences:

• Objects are created by calling a constructor instead of allocating them on the heap.

5

• Vector and Matrix classes in C++ are just numpy arrays in python.

• As templated classes do not exist in python, these have been hardcoded in the wrapper, e.g.,
PriorFactorPose2 corresponds to the C++ class PriorFactor<Pose2>, etc.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.5

0

0.5

1

1.5

2

2.5

Figure 2: The result of running optimize on the factor graph in Figure 1.

We can optimize this factor graph, by creating an initial estimate of type Values, and creating
and running an optimizer. This is illustrated in the listing below:

1 # Create the initial estimate
2 initial_estimate = gtsam.Values ()
3 initial_estimate.insert(1, gtsam.Pose2 (0.5, 0.0, 0.2))
4 initial_estimate.insert(2, gtsam.Pose2 (2.3, 0.1, -0.2))
5 initial_estimate.insert(3, gtsam.Pose2 (4.1, 0.1, pi /2))
6 initial_estimate.insert(4, gtsam.Pose2 (4.0, 2.0, pi))
7 initial_estimate.insert(5, gtsam.Pose2 (2.1, 2.1, -pi /2))
8

9 # Optimize the initial values using a Gauss -Newton nonlinear optimizer
10 optimizer = gtsam.GaussNewtonOptimizer(graph , initial_estimate)
11 result = optimizer.optimize ()
12 print ("Final Result :\n{}". format(result))

Listing 3: Optimizing

The result is shown graphically in Figure 2, along with covariance ellipses shown in green. These
covariance ellipses in 2D indicate the marginal over position, over all possible orientations, and show
the area which contain 68.26% of the probability mass (in 1D this would correspond to one standard
deviation). The graph shows in a clear manner that the uncertainty on pose T5 is now much less
than if there would be only odometry measurements. The pose with the highest uncertainty, T4, is
the one furthest away from the unary constraint f0(T1), which is the only factor tying the graph to
a global coordinate frame.

The figure above was created using an interface that allows you to use GTSAM from within
MATLAB, which provides some excellent visualization tools. Similar matplotlib-based visualization
tools are available in python.

6

Summary

We briefly summarize what we learned in this section:

1. LIDAR is a key sensor for autonomous driving

2. Localization can be done with LIDAR, or image-based

3. PoseSLAM: a SLAM variant using ICP pose constraints

4. The PoseSLAM factor graph graphically shows the constraints

5. MAP/MAP solution can be done via nonlinear optimization

6. GTSAM is an easy way to optimize over poses in C++/MATLAB/python

7

