
1 Geometry for Computer Vision

Motivation

We need to model the image formation process. The camera can act as an (angular) measurement
device. However, we need a mathematical model for a simple camera. Two cameras are better than
one: they can provide metric measurements.

Notation

A word about notation: we will often use lowercase letters for image quantities such as 2D points p
and q, and uppercase letters for 3D quantities, such as 3D points P and Q. We also follow this rule
when talking about the coordinates of a point, which we will write in two different ways, depending
on whether we mention in the text, such as p = (x, y), or in a display formula, such as

p =

[
x
y

]
or P =

 X
Y
Z


Mathematically, we think of 2D and 3D points as column vectors, but the (.) notation helps us
avoid always writing a transpose, i.e., we have p =

[
x y

]T
= (x, y).

1



1.1 Pinhole Camera Model

k

O

															P = (𝑋, 𝑌, 𝑍)

Q

j

i

p=(x,y)

q

C

Figure 1: Pinhole camera model for projecting 3D points P in the scene to 2D points p in the image.

Geometrically, the simplest and most-used camera model is the pinhole camera model. In
short, to project a 3D point P = (X,Y, Z) to a 2D image, we use the following equation:[

x
y

]
=

[
X/Z
Y/Z

]
(1)

This assumes that the 3D point P is expressed in camera coordinates, with the Z axis pointing
into the scene, the X axis pointing to the right, and the Y axis pointing down. This then yields 2D
coordinates (x, y) where x increases to the right and y increases downward. The pinhole camera
model is illustrated in Figure 1. The camera coordinate frame in which the 3D points are expressed
is shown on the left. The point O is the optical center and the point c is the image center, i.e.,
where the optical axis (the 3D Z-axis, by our convention) pierces the image plane.

The pinhole camera models that fact that 3D space is projected into 2D, and in particular we
lose depth information. In camera coordinates, the Z coordinate of a 3D point is called the depth
of the point. But Equation 1 shows that in the 2D projection, only the proportion of X resp.
Y with respect to Z is retained: we cannot actually recover the actual 3D location of the point
after projection. Indeed, if we have a point P = (X,Y, Z), and multiply all coordinates by 2, the
projection is the same: [

x
y

]
=

[
2X/2Z
2Y/2Z

]
=

[
X/Z
Y/Z

]
(2)

In general, all points on the viewing ray λP = (λX, λY, λZ), with λ an arbitrary scalar, will yield
the same projection in the image.

2



1.2 Vanishing Points

Y-axis 
vanishing

point
X- axis

vanishing point

Z-axis vanishing
point

Cattedrale di Monreale, Palermo 2016, by Frank Dellaert

Figure 2: This image, taken in Palermo, Sicily, shows that parallel lines in the scene intersect when
projected by a camera, although not necessarily within the image bounds.

In addition to losing the notion of depth, as discussed above, another property we lose projecting
into an image is parallelism of lines. In other words: parallel lines in the world do not remain parallel
in the image. This is illustrated vividly in Figure 2, where we have associated the three principal
directions in the scene with the world X, Y, and Z axes, respectively.

Let us model this mathematically. Suppose an environment contains a collection of parallel lines
such as in Figure 2. We can write the equations for these lines in parametric form as X

Y
Z

 =

 Xi

Yi
Zi

+ γ

 Ui
Vi
Wi


The terms in this equation can be interpreted as follows:

• Pi = (Xi, Yi, Zi) gives the coordinates for some point on the ith line, specified with respect to
the camera frame.

• Di = (Ui, Vi,Wi) is the direction of lines i, also specified with respect to the camera frame.
Since the lines are parallel, they all have the same direction vector Di.

• γ is a parameter that determines distance along the line from the point Pi.

Even though the lines are parallel in the world, due to the effects of perspective projection, the
images of these lines will intersect, except when the lines are parallel to the image plane. This
intersection point is known as the vanishing point. We can find the vanishing point by examining

3



the case where γ →∞. For a given line, if we let (u∞, v∞) denote the image plane coordinates for
the vanishing point, we have

u∞ = lim
γ→∞

λ
X

Z

= lim
γ→∞

X + γU

Z + γW

=
U

W

and by similar reasoning,

v∞ =
V

W

In other words, the projection of a vanishing point only needs the 3D direction (U, V,W ), and all
3D lines along the same direction project to the same vanishing point (u∞, v∞) = (U/W, V/W ).

1.3 Camera Calibration Parameters

We now discuss how the dimensionless 2D coordinates x and y give rise to image coordinates
expressed in units of pixels, which is how we typically access images.

Equation 1 assumes that the image plane is located at a distance of 1 of whatever the units we
use for the 2D point p. If instead it is placed at a distance F , we get[

x′

y′

]
= F

[
X/Z
Y/Z

]
(3)

In Equation 3 the 2D point and the focal length F are always expressed in the same units. If
the focal length F is expressed in mm., which is common in the industry, then x′ and y′ will be in
mm. as well, etc. Note that the units of the 3D point P do not matter, which is significant: we will
never know, from a single image alone, whether we are looking at a life-size scene of a dollhouse
representation of it. Some might say this is why television works :-)

By Equation 3 , the image center c always has the coordinates c = (0, 0). But this is not typically
how we address pixels in the image! Instead, we use image coordinates (u, v), which have their origin
in the upper left. If the origin is there, then the image center must have non-zero coordinates, and
this depends on the resolution of the image sensor. By convention we call these u0 and v0.

The resolution of the sensor also determines how the metric coordinates x and y get converted
to pixels: we introduce two constants k and l which express the number of pixels per unit of F (e.g.,
pixels per mm. if f the focal length F is given in mm.) Hence we have, in image coordinates[

u
v

]
=

[
u0
v0

]
+ F

[
kX/Z
lY/Z

]
=

[
u0 + αX/Z
v0 + βY/Z

]
(4)

where α .
= kF and β

.
= lF , both having units of pixels. In cameras with square pixels we have

α = β = f , where f is the focal length expressed in pixels.
The set of parameters u0, v0, f are called camera calibration parameters, and these three

(image center and focal length) are actually the most important for most cameras. Other parameters
include the aspect ratio a = α/β, which is 1 if the cameras has square pixels (and most of them
do) and the skew s, which we will ignore here. What can be important in wide-angle lenses are
additional distortion parameters κ that model the radial distortion that gets increasingly worse near
the edges of the image.

4



1.4 Homogeneous Coordinates

We now introduce homogeneous coordinates, which allow us to do two cool things: (a) we will
be able to talk about points at infinity, and (b) we will be able to write the non-linear projection
equation as a linear matrix-vector multiply. We do this both for 2D and 3D, and on the surface it
just means using a third coordinate equal to 1, i.e.

p = (x, y)→ p̃ = (x, y, 1)

and

P = (X,Y, Z)→ P̃ = (X,Y, Z, 1)

where we use a tilde to indicate a homogeneous point representation. The cost of using homogenous
coordinates is that they are not unique. Homogeneous points that only differ by a multiplicative
factor are equivalent, i.e., they represent the same point. Hence, you can always write a finite 2D
point as (x, y, 1). For example, the homogeneous point (4, 6, 2) is the same as (2, 3, 1) in homoge-
neous coordinates, and represent the same 2D point (x, y) = (2, 3). Likewise, all of the points below
represent the same 3D point

P0 =


1
1
2
1

 ≡


4
4
8
4

 =


−1
−1
−2
−1


where the symbol ≡ denotes projective equivalence.

In particular, any finite point in 2D or 3D has a non-zero value in the last slot,

p1 =

 2
4
2

 ≡
 1

2
1

 P1 =


8
−6
10
2

 ≡


4
−3
5
1


and are just a new way to represent the points (1, 2) and (4,−3, 5), respectively in 2D and 3D.
We should also mention two special cases: the 2D origin of the image plane is c̃ = (0, 0, 1) in
homogeneous coordinates, and the 3D origin of the camera coordinate frame (the optical center) is
Õ = (0, 0, 0, 1).

Points at infinity (mind blown!) are obtained by setting the last coordinate equal to zero, e.g.

p2 =

 1
0
0

 p3 =

 0
1
0


are 2D points at infinity, in the direction of the u and v axis, respectively. Likewise, in 3D these are
all points at infinity:

P2 =


1
0
0
0

 P3 =


0
0
1
0

 P4 =


1
1
2
0

 P5 =


3
0
1
0


Above, P2 and P3 are “at the end of the X and Z axis, respectively, whereas P4 and P5 are at
infinity in two different, arbitrary directions.

5



Mathematically, what we are doing is representing 2D or 3D Euclidean space with 2D or 3D
projective space, which extends the usual 3D space with a line or plane at infinity. In 2D, the
line at infinity extends the real plane to include points at infinity in a manner analogous to adding
+∞ and −∞ to the set of real numbers to obtain the extended real number system. In 3D, we
actually have a plane at infinity: indeed, the three first coordinates of all points at infinity are 2D
homogeneous coordinates!

The recipe to recover non-homogeneous coordinates is to simply divide by the last coordinate,
i.e.

p̃ = (u, v, w)→ p =
( u
w
,
v

w

)
(5)

and

P̃ = (X,Y, Z, T )→ P =

(
X

T
,
Y

T
,
Z

T

)
. (6)

This is another way to realize that projectively equivalent points, which only differ up to a scale,
represent the same point. And, you can also see that dividing by zero yields infinite points.

1.5 Pinhole Model in Homogeneous Coordinates

But what about the promised linear projection equation? Well, Equation 5 in turn allows us to
write perspective projection in a linear way. Indeed, when we write

p̃ =

 x
y
t

 =

 1 0
1 0

1 0



X
Y
Z
T

 =
[
I 0

]
P̃

we get the following simple expression for the 2D homogeneous coordinates of the projection of the
3D point:

p̃ =

 X
Y
Z

 ,
In other words, if a 3D point has homogeneous coordinates (X,Y, Z, 1), the homogeneous coordinates
of the 2D projection are just p̃ = (X,Y, Z). Converting back to non-homogeneous coordinates via
Equation 5 we get

p =

[
X/Z
Y/Z

]
i.e., this is the pinhole camera model from Equation 1!

What if we want to express p in image coordinates? Easy, we multiply on the left by another
matrix that does the scaling by f (expressed in pixels) and translation to account for the non-zero
image center:

p̃ =

 u
v
w

 =

 f u0
f v0

1

 1 0
1 0

1 0



X
Y
Z
T

 = K
[
I 0

]
P̃ (7)

6



Above K is the 3 × 3 camera calibration matrix. When you work through it, you will realize
that we obtain

p̃ =

 u
v
w

 =

 u0Z + fX
v0Z + fY

Z

→ p =

[
u0 + f XZ
v0 + f YZ

]
Remarkably, points at infinity with T = 0 also have an image which is typically finite: note that T
does not figure in the equation above. In other words: all points on the same viewing ray have the
same images, even points at infinity. This agrees with what we found in Section 1.1.

1.6 Projecting Points in the World

Is it not remarkable in Equation 7 how we can use multiplying with a 3× 3 matrix K to implement
scaling and translation in 2D? That brings us to the final transformation: what if 3D points were
not expressed in the camera coordinate frame C but instead in some world frameW? To model this,
we introduce the 3× 3 camera rotation matrix Rwc which has as columns the axes of the camera
frame, expressed in world coordinate frames. Likewise, we also introduce the camera translation
twc , expressed in world frame. With this, we can express any point P̃ c expressed in homogeneous
camera coordinates in the world frame by multiplying with the 4× 4 matrix below:

P̃w =

[
Rwc twc
0 1

]
P̃ c.

Substituting this into 7 we finally obtain

p̃ =

 u
v
w

 = K
[
I 0

] [ Rwc twc
0 1

]−1
P̃w (8)

Because we have (trust us on this for now) that[
Rwc twc
0 1

]−1
=

[
RwTc −RwTc twc
0 1

]
we can also write the entire linear camera projection model as

p̃ = K
[
I 0

] [ RwTc −RwTc twc
0 1

]
P̃w = KRwTc

[
I −twc

]
P̃w (9)

The last formula on the right can be read, from right to left, as: (a) take P̃w, (b) subtract the
camera center twc , (c) use RwTc to rotate into camera coordinates, and (d) calibrate to pixels using
K, to (e) obtain the homogeneous coordinates p̃ of the projected point.

As one final step, we can combine all these operations using a single 3× 4 camera matrix P:

p̃ = KRwTc
[
I −twc

]
P̃w = PP̃w (10)

7



Worked Example

If you take a picture with your phone while looking in the direction of the world X axis, and
assuming the world Z axis is pointing up (very common convention) then the camera rotation
matrix will be given by

Rwc =

 1
−1

−1


In addition, suppose we defined the world coordinate frame such that we are standing at location
(Xw, Y w) = (20,−5), and the camera is at eye height, say Zw = 1.5 (all quantities in meter). Then
we also have

twc =

 20
−5
1.5


Finally, if we assume a typical smartphone calibration, e.g., an iPhone 5, we will have (u0, v0) ≈
(1600, 1200) and f ≈ 3000, all in pixels. we then have

P .
= KRwTc

[
I −twc

]
=

 3000 1600
3000 1200

1

 −1
−1

1

 1 −20
1 5

1 −1.5


=

 1600 −3000 −47000
1200 −3000 −19500
1 −20


Projecting some points is informative. Looking towards the optical axis, we see the point at infinity
in the direction of the axis projects to

P


1
0
0
0

 =

 1600
1200
1


i.e., the image center, as expected. The two other main vanishing points, in the Y and Z directions
beget

P


0
1
0
0

 =

 −30000
0

 ≡
 1

0
0

 P


0
0
1
0

 =

 0
−3000

0

 ≡
 0

1
0


This also makes sense: they are points at infinity in the image, respectively in the horizontal and
vertical directions. Finally, let’s project a point on the ground plane, 10 meters in the X direction:

P


30
−5
0
1

 =

 1600
1650
1


which projects below the image center in the image (remember v increases downward).

Exercise

Define a large square on the ground plane, centered around the ground plane point above, and
project that in the image. Sketch your solution.

8


