
Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

Contents

1 Serial Link Manipulators 1
1.1 Basic Definitions . 1
1.2 An RRR Example . 3
1.3 Forward Kinematics . 3
1.4 Describing Serial Manipulators 5
1.5 RRR Forward Kinematics: Worked Example 6
1.6 Joint-space Motion Control . 7
1.7 The Manipulator Jacobian . 10
1.8 Cartesian Motion Control using the Inverse Jacobian 11
1.9 RRR Jacobian and Cartesian Control: Worked Example 12

1 Serial Link Manipulators

1.1 Basic Definitions

(a) Revolute joint. (b) Prismatic joint.

Figure 1.1: Two main joint types in robot arms.

A robot arm (aka serial link manipulator) consists of a series of rigid links,
connected by joints (motors), each of which has a single degree of freedom.:

• Revolute joint: the single degree of freedom is rotation about an axis.

• Prismatic joint: the single degree of freedom is translation along an axis.

1

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

Figure 1.2: Other types of joints.

More complex joints can be described as combinations of these basic joints.
There are several types of joint that have more than one degree of freedom – but
we do not consider those in detail. In fact, all of the higher degree-of-freedom
joints can be described by combinations of one degree-of-freedom joints, so there
is no need to explicitly consider these.

A serial link manipulator has several links, numbered 0 to n, connected by
joints, numbered 1 to n. Joint i connects link i − 1 to link i. We will consider
revolute joints with joint angle θi, or a prismatic joints with link offset di.

In summary, for for a robot with n joints:

• the base (which does not move) is Link 0;

• the end-effector or tool is attached to Link n;

• joint i connects Link i−1 to Link i.

We can treat both revolute and prismatic joins uniformly by introducing the concept
of a generalized joint coordinate qi, and specifying the joint type using a string,
e.g., the classical Puma robot is RRRRRR, and the SCARA pick and place robot
is RRRP. The vector q ∈ Q of these generalized joint coordinates is also called the
pose of the manipulator, where Q is called the joint space of the manipulator. In

2

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

summary, we define the joint variable qi for joint i as:{
θi if joint is revolute
di if joint is prismatic

1.2 An RRR Example

Figure 1.3: Top: rest state of a planar RRR serial manipulator, with the base frame
on left. Bottom: actuating two degrees of freedom, respectively rotating θ2 and θ3.

All essential concepts can be easily developed for 2D or planar manipulators
with revolute joints only. An example is shown in Figure 1.3. The top panel shows
the manipulator at rest, along with four 2D coordinate frames: the base frame and
one coordinate frame for each of the three links. For this RRR manipulator, the
generalized joint coordinates are q =

[
θ1 θ2 θ3

]T , and the effect of changing
individual joint angles θi is shown at the bottom of the figure.

1.3 Forward Kinematics

Kinematics describes the position and motion of a robot, without considering
the forces required to cause the motion. Key questions we will answer are how

3

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

𝑇"#

𝑇$"

𝑇$#

Link 1

Link 2

Figure 1.4: Transformations involved in the forward kinematics of a 2-link arm.

to determine the pose of the end-effector tool, given joint angles, and the reverse
question: what joint angles should we command to get the tool to be at a desired
pose? We start with the first question, which is known as forward kinematics.

The forward kinematics problem can be stated as follows:

Given generalized joint coordinates q ∈ Q, we wish to determine the
pose T 0

t (q) of the tool frame T relative to the base frame 0.

The general approach we will take is this:

• we treat each Link j as a rigid body;

• we attach the reference coordinate frame 0 to Link 0, which is merely the
fixed base;

• we describe the pose (position and orientation) of every other Link j by
attaching a coordinate frame T 0

i (q), expressed to the base frame 0;

• if two links, say link j−1 and link j are connected by a single joint, then the
relationship between the two frames can be described by a homogeneous
transformation matrix T i−1

i (qi) which will depend only on the value of the
joint variable qi! Now, the trick is to express T i−1

i (qi) as a function of qi.

Before we do that, let us consider the example of a 2-link arm as shown in Figure
1.4. In the figure, the transform T 0

1 specifies the pose of Link 1 with respect to the
base. We attached frame 1 at the end of Link 1, but it could be anywhere you like.

4

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

In turn, the transform T 1
2 specifies pose of Link 2 with respect to Link 1. To obtain

the pose of Link 2 with respect to the base frame, we multiply both transforms,
using simple matrix multiplication:

T 0
2 = T 0

1 T
1
2

We now generalize this to n links and an arbitrary end-effector or Tool frame
in Link n. Since the tool frame T moves with link n, we have

T 0
t (q) = T 0

n(q)Tnt

where Tnt specifies the unchanging pose of the tool T in the frame of link n. Some-
times the tool frame is taken to be identical to frame n, and then Xn

t is simply the
identity matrix. The link coordinate frame T 0

n(q) itself can be expressed recursively
as

T 0
n(q) = T 0

n−1(q1 . . . qn−1)Tn−1
n (qn),

finally yielding

T 0
t (q) = T 0

1 (q1) . . . T i−1
i (qi) . . . T

n−1
n (qn)Tnt . (1.1)

Exercise

Draw a simple two-link RP manipulator and provide the above forward kinematics
formula.

1.4 Describing Serial Manipulators

Equation 1.1 is correct but we need to tie it to the robot’s geometry. We can
make everything easy by adopting the following strategy:

• We take frame 0 (the base frame) to have its origin at the center of Joint 1,
i.e., on the axis of rotation.

• We rigidly attach Frame i is to Link i, in such a way that it has its origin at
the center of Joint i+ 1.

• The xi-axis is chosen to be collinear with the origin of Frame i− 1.

• Define the link length ai as the distance between the origins of Frames i and
i− 1.

5

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

Link 1

Link 2

• 𝑥" is collinear with the origin of Frame 0

𝑥$

𝑦$

𝑥"

𝑥& is collinear with the
origin of Frame 1

𝑥&
𝜃& is the angle from 𝑥"to 𝑥&

Figure 1.5: Example of assigning link frames for a 2-link arm.

This is illustrated for our 2-link RR-arm in Figure 1.5.
If we do all this, then the homogeneous transformation that relates adjacent

frames is given by (for revolute joints):

T i−1
i =

 cos θi − sin θi ai cos θi
sin θi cos θi ai sin θi

0 0 1

1.5 RRR Forward Kinematics: Worked Example

As an example, Figure 1.6 shows a planar RRR manipulator with a1 = 3.5, a2 =
3.5, and a3 = 2, in two different joint configurations. We identified the tool frame
with link frame 3, i.e., X3

t = I . We then have:

T 0
1 =

 cos θ1 − sin θ1 3.5 cos θ1

sin θ1 cos θ1 3.5 sin θ1

0 0 1

T 1

2 =

 cos θ2 − sin θ2 3.5 cos θ2

sin θ2 cos θ2 3.5 sin θ2

0 0 1

T 2
3 =

 cos θ3 − sin θ3 2 cos θ3

sin θ3 cos θ3 2 sin θ3

0 0 1

6

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

(a) θ1 = 112º, θ2 = −52º, and θ3 = −60º (b) θ1 = 60º, θ2 = −45º, and θ3 = −90º

Figure 1.6: Two example configurations for a planar RRR manipulator with all
three joints actuated.

When multiplied out, we obtain

T st (q) =

 cosβ − sinβ 3.5 cos θ1 + 3.5 cosα+ 2 cosβ
sinβ cosβ 3.5 sin θ1 + 3.5 sinα+ 2 sinβ

0 0 1

 (1.2)

with α = θ1 + θ2 and β = θ1 + θ2 + θ3, the latter being the tool orientation.

Exercise

Provide the multiplied-out forward kinematics formula for your RP manipulator.

1.6 Joint-space Motion Control

Trajectory following is an important capability for manipulator robots, and three
main approaches are common: (a) trajectory replay, (b) joint space motion control,
and (c) cartesian space motion control.

Trajectory replay relies on an operator to perform the motion first, after which
the robot simply replays the sequence, and is akin to motion-capture in movies.
Even then, to interpolate between waypoints obtained by robot programming, one
of the two other methods is needed.

7

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

Another scenario where motion control is useful is when we just want to move
the end-effector T 0

t to a particular pose. Inverse kinematics, which we will discuss
in detail in a future section, allows us to calculate the joint angles qd for a particular
desired pose.

Figure 1.7: In joint-space motion control, the joint angles are linearly interpolated,
but this leads to a curved path in Cartesian space.

Joint space motion control is the easiest, and applies linear interpolation or a
simple control law in joint space to move from one waypoint to the other, e.g.,

qt+1 = qt +Kp(qd − qt) (1.3)

where qt and qd are the current and desired joint angles, and Kp > 0 is a gain
parameter.

Before fully understanding Equation 1.3, let us consider an example of pro-
portional joint space control in action, as shown in Figure 1.7 for the three-link
manipulator. The robot started off in rest, with the end-effector at the bottom-
right. The desired end-effector pose T 0

t in this case is (4.5, 5.2, 0.0) as shown in
the figure. Using inverse kinematics the corresponding desired joint angle vector
qd was determined to be qd = [99.2,−68.8,−30.4], and the figure shows how
proportional feedback control executes a curved trajectory upward to achieve the
desired pose. The “trail” shows that the movement of the end-effector slows down
considerably near the desired goal pose.

Now let us dive into what is happening in Equation 1.3: at any given moment
t we calculate the joint space error et = qd − qt. Pretending for a moment that q

8

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

is scalar, then if the error et is positive we need to increase qt to drive the error to
zero. We can use a fixed amount ∆q, but a better approach is to make the amount
by which we increase qt proportional to the error et, i.e.,

∆q = Kpet,

where Kp is the proportional gain parameter. The entire scheme is called propor-
tional feedback control, and has two advantages:

• as the desired value qd is approached, the adjustment ∆q becomes smaller
and smaller, slowly approaching qd so it avoids overshooting.

• it automatically deals with the case in which the error et is negative, in which
case we then decrease qt;

• it generalizes directly to multiple dimensions, as is needed for joint angles.

Note that setting the value of the gain Kp needs some care. If we set it too large,
we might overshoot the goal, and if we set it too small, convergence to the goal
will be very slow. If you are familiar with gradient descent optimization, then Kp

plays a similar role as the learning rate.
Other control schemes are possible, and a very popular approach is PID con-

trol, where in addition to the Proportional gain, we also allow feedback terms
calculated from the Integral of the error and Derivative of the error, respectively.

Discussion

Joint-space control, while very simple, might seem a sub-optimal way to proceed.
Indeed, if we are at a particular pose and want to move to another, desired pose,
why not make a beeline for the goal pose? In the cartesian workspace, i.e., the
regular 2D or 3D space in which the end effector lives, the shortest path should be
a line, right? The answer is not so straightforward:

1. If you are talking about the position of the end-effector, then the shortest
path is indeed a straight line, in this case in 2D.

2. However, if you take into account the orientation of the end effector, the
answer is not so clearcut anymore: what is the shortest path in the space
SE(2) of rigid transformations?

3. The shortest path in joint space is exactly what joint-space control executes.
Only, a straight line in joint space causes a curved path in cartesian space.

In many cases, there is a desire to control the trajectory in cartesian space rather
than joint space, however, which leads to the next topic.

9

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

1.7 The Manipulator Jacobian

Figure 1.8: The velocities induced by a change in joint angle (red=θ1, green=θ2,
blue=θ3), for joint angles qleft = (0º, 90º, 0º) and qright = (161º,−109º, 38º).

Because we eventually do need to control the joint angles q, the key is to derive
a relationship between velocities [ẋ, ẏ, θ̇]T in pose space in response to commanded
velocities in joint space q̇. This relationship is locally linear, and hence we have
the following expression at a given configuration q:

[ẋ, ẏ, θ̇]T = J(q)q̇ (1.4)

The quantity J(q) above is the manipulator Jacobian. For planar manipulators, as
[ẋ, ẏ, θ̇]T ∈ R3, the Jacobian is a 3×nmatrix, with n is the number of joints. Each
column of the Jacobian J(q) contains the velocity [ẋ, ẏ, θ̇]T ∈ R3 corresponding a
change in the joint angle qi only, i.e.,

J(q)
∆
=
[
J1(q) J2(q) . . . Jn(q)

]
where each column Ji(q) is the vector of (three) partial derivatives of the pose with
respect to joint angle qi:

Ji(q)
∆
=

∂x(q)
∂qi
∂y(q)
∂qi
∂θ(q)
∂qi

 .
10

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

A graphical way to appreciate what a Jacobian means physically is to draw the
2D velocities in Cartesian space. For the three-link planar manipulator example,
Figure 1.8 above shows the Jacobian J(q) as a set of three velocities: red for joint
1, green for joint 2, and blue for joint 3. In other words, the red vector shows
the instantaneous velocity vector for the origin of the end effector frame when
joint velocity θ̇1 = 1 and θ̇2 = θ̇3 = 0. These instantaneous velocities depend
on the current joint angles q. The pattern is clear: these velocities are always
perpendicular to the vector to the joint axis, and proportional to the distance to the
joint axis.

Exercise

The Jacobian J(q) varies with the configuration q. Is that always the case? Come
up with a robot that has a constant Jacobian.

1.8 Cartesian Motion Control using the Inverse Jacobian

Cartesian motion control is a method that allows us to follow a well-defined
path in Cartesian space, most often a straight line or some interpolating spline.
One approach is to calculate an inverse kinematics solution at many intermediate
waypoints and apply joint control again, to get from one to the other. However,
there is a method by which we can avoid inverse kinematics altogether.

For a planar manipulator with three joints, i.e., n = 3, we can simply invert
the 3× 3 Jacobian J(q) to calculate the joint space velocities q̇ corresponding to a
given end-effector velocity [ẋ, ẏ, θ̇]T :

q̇ = J(q)−1[ẋ, ẏ, θ̇]T (1.5)

Hence, to achieve a desired trajectory in Cartesian space, we need to calculate the
desired direction in cartesian space at any given time. If our desired end effector
pose is Td and the current pose is T (qt) we can do this via

Et(q) =

 ex
ey
eθ

 =

 xd − x(qt)
yd − y(qt)
θd 	 θ(qt)

where we extract [xd, yd, θd]

T from Td and [x(qt), y(qt), θ(qt)]
T from T (qt), re-

spectively. Note that there are some subtleties around this: extracting a value for
the orientation θ is not unique, because e.g., cos(θ) = cos(θ + 2π). In addition,
subtracting two θ values is fraught with danger because of this very same issue. To
this end, we introduce the notation θd 	 θ(qt) above to signify a “subtraction” that

11

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

yields the smallest angle between two different orientations, in absolute value. The
resulting magnitude |θd 	 θ(qt)| should always be less than or equal to π.

We then calculate the corresponding joint velocities q̇ using (1.5), and apply
simple proportional control, i.e.,

qt+1 = qt +KpJ(qt)
−1Et(q). (1.6)

What is going on in Equation 1.6? At any given moment, the cartesian or
workspace error Et(qt) is evaluated, and this is a three-dimensional error in x,
y, and θ. This error gives us a direction in cartesian space that we want to move,
and by multiplying it the inverse Jacobian we turn this into an error in joint space.
But we already know how to resolve errors in joint space! Using a proportional
gain Kp, we make progress in that joint space direction, and we repeat. The secret
ingredient is that unlike in pure joint-space control, we re-compute the direction in
joint space at each time t to obtain a straight-line trajectory in the workspace.

1.9 RRR Jacobian and Cartesian Control: Worked Example

Figure 1.9: Cartesian space motion control, showing the resulting straight trajecto-
ries of the end-effector for three successive waypoints.

Let us calculate the Jacobian J(q) for the three-link planar manipulator exam-
ple. To analytically compute the Jacobian in this case, we can read off the pose

12

Draft M
arch 2020, (c) Dellaert &

Hutchinson. Image permissions pending.

T (q) components from the forward kinematics equation 1.2 on page 7, yielding x(q)
y(q)
θ(q)

 =

 3.5 cos θ1 + 3.5 cosα+ 2 cosβ
3.5 sin θ1 + 3.5 sinα+ 2 sinβ

β

where α = θ1 + θ2 and β = θ1 + θ2 + θ3. Hence, the 3× 3 Jacobian J(q) can be
computed as −3.5 sin θ1 − 3.5 sinα− 2.5 sinβ −3.5 sinα− 2.5 sinβ −2 sinβ

3.5 cos θ1 + 3.5 cosα+ 2.5 cosβ 3.5 cosα+ 2.5 cosβ 2 cosβ
1 1 1

(1.7)

Note that for a planar manipulator, all entries in the third row will always be 1 the
way we defined things: the rotation rates of the joints can just be added up to obtain
the rotation rate of the end effector.

An example of Cartesian motion control with proportional control is shown in
Figure 1.9 for the three-link planar robot. As shown by the trail in the figure, the
inverse Jacobian managed to follow straight lines in cartesian space.

13

