
1 Inference in Graphical Models

Motivation

Bayes nets are great for modeling, but for inference we need better data structures. Below we start
the important special case of filtering, and introduce the Bayes filter. To reason about trajectories we
then define hidden Markov models, and highlight their connection with robot localization. We then
show how to efficiently perform inference by converting any Bayes net (with evidence) to a factor
graph. We show both full posterior inference, MPE, and MAP estimation for HMMs. After that,
we generalize to completely general inference in Bayes nets, introducing the elimination algorithm.

1.1 Bayes Filtering

We start off with the Bayes filter, which is a very simple recursive inference scheme. In this case we
present the discrete version, which was used in robotics for localization under the name Markov
localization. But the same general scheme underlies the venerable Kalman filter, and Monte Carlo
Localization, which is based on a particle filter. The latter two are typically used in continuous
settings, so we will revisit them later.

In the Bayes filter we are interested in estimating the state of the robot at the current time t,
given all the measurements up to and including time t. Assuming that we have a probability distribution
P (St−1) over the previous state St−1, we proceed in two phases:

1. In the prediction phase we predict a predictive distribution on the current state St given the
distribution P (st−1) and a given action At−1 = at−1. This is done by marginalizing out the
previous state St−1, by summing over all possible values st−1 for St−1:

P (St) =
∑
st−1

P (St|st−1, at−1)P (st−1).

2. In the measurement phase we upgrade this prior to a posterior via Bayes’ rule, given an
observation Ot = ot:

P (St|Ot = ot) ∝ P (ot|St)P (St)

∝ L(St|ot)P (St).

Above and where it is clear from context we abbreviate P (St|St−1 = st−1, At−1 = at−1) as
P (St|st−1, at−1), in the interest of a more succinct notation. But always remember that St is a
random variable, and st is a value assigned to the random variable.

To be correct, we should really indicate exactly what information we are conditioning on when giving
the formulas for the Bayes filter. To that end, we introduce the notation Ot = {o1, o2, . . . ot}, i.e., all
measurements o up to and including time t. Similarly, we define the action At = {a1, a2, . . . at}. The
Bayes filter is then stated succinctly as

P (St|Ot−1,At) =
∑
st−1

P (St|st−1, at−1)P (st−1|Ot−1,At−1) (1)

P (St|Ot,At) ∝ L(St|ot)P (St|Ot−1,At), (2)

and it is seen to be perfectly recursive.

1

Figure 1: One-dimensional example of the measurement phase in Markov localization, the discrete
version of the BAyes filter.

Figure 1 illustrates the measurement phase for a simple 1D example. In this environment there are
two doors, and the robot has a door sensor. The predictive distribution P (S) encodes that we believe
the robot to be near the left door. The likelihood L(S; o), where o indicates that we did perceive a door,
models the fact that we are more likely to be near a door given O = o, but also allows for the fact that
the door sensor could misfire at any location. Note that the likelihood is unnormalized and there is no
need for it to sum up to 1. Finally, the posterior P (S|o) is obtained, via Bayes’ rule, as the product of
the prediction P (S) and the likelihood L(S; o), and is shown at the bottom as a normalized probability
distribution. As you can see, the most probable explanation for the robot state is S = 5, but there is a
second mode at S = 17 due to the bimodal nature of the likelihood. However, that second mode is less
probable because of our prior belief over S.

The Bayes filter above is a simple and computationally attractive scheme if we are only interested
in the posterior distribution over the current state. However, if we are interested in the posterior
over the entire state trajectory, we need to consider more general inference schemes. To this end,
we introduce hidden Markov models in the next section.

1.2 Hidden Markov Models

A hidden Markov model or HMM is a dynamic Bayes net that has two types of variables: states
X and measurements Z. The states X are connected sequentially and satisfy the what is called the
Markov property: the probability of a state Xt is only dependent on the value of the previous

2

state Xt−1. We call a sequence of random variables with this property a Markov chain. In addition,
in an HMM we refer to the states X as hidden states, as typically we cannot directly observe their
values. Instead, they are indirectly observed through the measurements Z, where we have one
measurement per hidden state. When these two properties are satisfied, we call this probabilistic
model a hidden Markov model.

Figure 2: An HMM, unrolled over three time-steps, represented by a Bayes net.

Figure 2 shows an example of an HMM for three time steps, i.e.., X = {X1, X2, X3} and
Z = {Z1, Z2, Z3}. As we discussed, in a Bayes net each node is associated with a conditional
distribution: the Markov chain has the prior P (X1) and transition probabilities P (X2|X1) and
P (X3|X2), whereas the measurements Zt depend only on the state Xt, modeled by measurement
models P (Zt|Xt). In other words, the Bayes net encodes the following joint distribution P (X ,Z):

P (X ,Z) = P (X1)P (Z1|X1)P (X2|X1)P (Z2|X2)P (X3|X2)P (Z3|X3)

Note that we can also write this more succinctly as

P (X ,Z) = P (Z|X)P (X) (3)

where
P (X) = P (X1, X2, X3) = P (X1)P (X2|X1)P (X3|X2) (4)

is the prior over state trajectories.

1.3 Naive Inference in HMMs

In inference, we might want to infer the maximum probable explanation (MPE) for the states X given
values z = {z1, z2, z3} for Z. As we saw before, one way to perform inference is to apply Bayes’
rule to Equation 3, and get an expression for the posterior probability distribution over the state
trajectory X , given the measurements Z = z:

P (X|Z) ∝ P (Z = z|X)P (X)

= L(X ;Z = z)P (X) (5)

where P (X) is given above in Equation 4, and the likelihood (X ;Z = z) of X given Z = z is defined
as before, yielding the following function of X :

L(X ;Z = z)
∆
= P (Z = z|X)

= P (z1|X1)P (z2|X2)P (z3|X3)

= L(X1;Z1)L(X2;Z2)L(X3;Z3)

3

As we saw, a naive implementation for finding the most probable explanation (MPE) for X
would tabulate all possible trajectories X and calculate the posterior (5) for each one. Unfortunately
the number of entries in this giant table is exponential in the number of states. Not only is this
computationally prohibitive for long trajectories, but intuitively it is clear that for many of these
trajectories we are computing the same values over and over again. In fact, there are three different
approaches to improve on this:

1. Branch & bound

2. Dynamic programming

3. Inference using factor graphs

Branch and bound is a powerful technique but will not generalize to continuous variables, like the
other two approaches will. And, we will see that dynamic programming, which underlies the classical
inference algorithms in the HMM literature, is just a special case of the last approach. Hence, here
we will dive in and immediately go for the most general approach: inference in factor graphs.

1.4 Factor Graphs

We first introduce the notion of factors. Again referring to the example from Figure 2, let us consider
the posterior (5). Since the measurements Z are known, the posterior is proportional to the product
of six factors, three of which derive from the the Markov chain, and three are likelihood factors as
defined before:

P (X|Z) ∝ P (X1)L(X1; z1)P (X2|X1)L(X2; z2)P (X3|X2)L(X3; z3) (6)

Some of these factors are unary factors, and some are binary factors. In particular, in (6) some of the
factors depend on just one hidden variable, for example L(X2; z2), whereas others depend on two
variables, e.g., the transition model P (X3|X2). Measurements are not counted here, because once
we are given the measurements Z, they merely function as known parameters in the likelihoods
L(Xt; zt), which are seen as functions of just the state Xt.

Figure 3: An HMM with observed measurements, unrolled over time, represented as a factor graph.

This motivates a different graphical model, a factor graph, in which we only represent the hidden
variables X1, X2, and X3, connected to factors that encode probabilistic information on them. For
our example with three hidden states, the corresponding factor graph is shown in Figure 3. It should
be clear from the figure that the connectivity of a factor graph encodes, for each factor φi, which
subset of variables Xi it depends on. We write:

φ(X) = φ1(X1)φ2(X1)φ3(X1, X2)φ4(X2)φ5(X2, X3)φ6(X3) (7)

4

where the factors in (7) are defined to correspond one-to-one to Equation 6. For example,

φ6(X3)
∆
= L(X3; z3).

All measurements are associated with unary factors, whereas the Markov chain is associated mostly
with binary factors, with the exception of the unary factor φ1(X1). Note that in defining the factors
we can omit any normalization factors, which in many cases results in computational savings.

Formally a factor graph is a bipartite graph F = (U ,V, E) with two types of nodes: factors
φi ∈ U and variables Xj ∈ V. Edges eij ∈ E are always between factor nodes and variables nodes.
The set of variable nodes adjacent to a factor φi is written as N (φi), and we write Xi for the random
variable associated with this set. With these definitions, a factor graph F defines the factorization
of a global function φ(X) as

φ(X) =
∏
i

φi(Xi). (8)

In other words, the independence relationships are encoded by the edges eij of the factor graph,
with each factor φi a function of only the variables Xi in its adjacency set N (φi).

1.5 Converting Bayes Nets into Factor Graphs.

Figure 4: Converting a Bayes net into a factor graph, in the case that the variables Z are known.

Every Bayes net can be trivially converted to a factor graph. Recall that every node in a Bayes
net denotes a conditional density on the corresponding variable and its parent nodes. Hence, the
conversion is quite simple: every Bayes net node splits in both a variable node and a factor node in
the corresponding factor graph. The factor is connected to the variable node, as well as the variable
nodes corresponding to the parent nodes in the Bayes net. If some nodes in the Bayes net are
evidence nodes, i.e., they are given as known variables, we omit the corresponding variable nodes:
the known variable simply becomes a fixed parameter in the corresponding factor.

Once we convert a Bayes net with evidence into a factor graph where the evidence is all implicit
in the factors, we can support a number of different computations. First, given any factor graph
defining an unnormalized density φ(X), we can easily evaluate it for any given value, by simply
evaluating every factor and multiplying the results. The factor graph represents the unnormalized
posterior, i.e., φ(X) ∝ P (X|Z). Evaluation opens up the way to optimization, e.g., finding the

5

most probable explanation or MPE, as we will do below. In the case of discrete variables, graph
search methods can be applied, but we will use a different approach.

While local or global maxima of the posterior are often of most interest, sampling from a
probability density can be used to visualize, explore, and compute statistics and expected values
associated with the posterior. However, the ancestral sampling method we discussed earlier only
applies to directed acyclic graphs. There are however more general sampling algorithms that can be
used for factor graphs, more specifically Markov chain Monte Carlo (MCMC) methods. One such
method is Gibbs sampling, which proceeds by sampling one variable at a time from its conditional
density given all other variables it is connected to via factors. This assumes that this conditional
density can be easily obtained, which is in fact true for discrete variables.

Below we use factor graphs as the organizing principle for probabilistic inference. In later chap-
ters we will expand their use to continuous variables, and will see that factor graphs aptly describe
the independence assumptions and sparse nature of the large nonlinear least-squares problems aris-
ing in robotics. But their usefulness extends far beyond that: they are at the core of the sparse
linear solvers we use as building blocks, they clearly show the nature of filtering and incremental
inference, and lead naturally to distributed and/or parallel versions of robotics.

Exercise

1. Convert the dynamic Bayes net from the previous section into a factor graph, assuming no
known variables.

1. Finally, do the same again, but now assume the states are given. Reflect on the remarkable
phenomenon that happens.

1.6 The Max-Product Algorithm for HMMs

Given a factor graph, the max-product algorithm is anO(n) algorithm to find the maximum probable
explanation or MPE.

We will use the example from Figure 3 to give the intuition. To find the MPE for X we need to
maximize the product

φ(X1, X2, X3) =
∏

φi(Xi) (9)

i.e., the value of the factor graph. The max-product algorithm proceeds one variable at a time,
and in an HMM we will proceed from left to right, i.e. we start with state X1 and proceed until we
processed all states.

Eliminating X1

We start by considering the first state X1, and we form a product factor ψ(X1, X2) that collects
only the factors connected to X1:

ψ(X1, X2) = φ1(X1)φ2(X1)φ3(X1, X2).

When we use a factor in a product, we remove it from the original factor graph. Note that because one
of those factors, the state transition model φ3(X1, X2)

∆
= P (X2|X1), is also connected to the second

state X2, the product factor is a function of both X1 and X2, i.e., it is a binary factor.
The key observation in the max-product algorithm is that we can now eliminate X1 from the

problem, by looking at all possible values x2 of X2, and creating a lookup table g1 for the best

6

Figure 5: Max-product: eliminating X1.

possible value of X1:
g1(X2) = arg max

x1

ψ(x1, X2).

The size of this lookup table is equal to the number of possible outcomes for X2: in our grid-world
example this is 100, as we are using a 10× 10 grid. We can of course store this lookup table as a grid,
as well. It might help your understanding to think about what this table will look like.

We also record the value of the product factor for that maximum, so we can use it down the line
for taking into account the consequence of each choice:

τ(X2) = max
x1

ψ(x1, X2).

In practice, of course, both steps can be implemented in a single function. We then put this new
factor τ(X2) back into the graph, essentially summarizing the result of eliminating X1 from the
problem entirely, obtaining the reduced graph

Φ2:3 = τ(X2)φ4(X2)φ5(X2, X3)φ6(X3). (10)

Let us reflect on what happened above, because it is significant: we eliminatedX1 from consideration,
and obtained a reduced problem that only depends on the remaining statesX2 andX3. You can intuitively
see that this algorithm will terminate after n steps, and in fact you could prove it by induction. In addition,
the lookup table g1 gives us a way that, once we know what the optimal value for X2 is, we can just read
off the optimal value for X1. This is what we will do, in reverse elimination order, after the algorithm
terminates.

Eliminating X2

We now perform exactly the same steps for the state X2. In this case, the product factor ψ(X2, X3)
has only factors connected to X2,

ψ(X2, X3) = τ(X2)φ4(X2)φ5(X2, X3),

but now includes the factor τ(X2) from the previous step. Note that since we started from the reduced
graph (10), the product factor is guaranteed to not depend on the first state X1: that was eliminated!

7

Figure 6: Max-product: eliminating X2.

In fact, we can now in turn eliminate X2 from the problem, by looking at all possible values x3 of X3,
and creating a lookup table g2 for the best possible value of X2, given X3,

g2(X3) = arg max
x2

ψ(x2, X3),

and as above we also record the value of the product factor for that maximum in a new factor τ(X3):

τ(X3) = max
x2

ψ(x2, X3).

We then put this new factor τ(X3) back into the graph, which is now reduced even more:

Φ3:3 = τ(X3)φ6(X3)

Eliminating X3

Figure 7: Max-product: eliminating X3.

8

Finally, we eliminate X3, where the product factor is now the entire remaining graph and only
depends on X3, as all other states have already been eliminated:

ψ(X3) = τ(X3)φ6(X3).

We again obtain a lookup table,
g3(∅) = arg max

x3

ψ(x3),

and a new factor:
τ(∅) = max

x1

ψ(x3).

Note however that now the value does not depend on any arguments! This is indicated by making
the argument list equal to the empty set ∅. Indeed, g3 just tells us what the best value for X3

is, and τ tells us the corresponding value. Because it incorporates the factors from the previous
elimination steps, this will in fact be exactly the solution to Problem 9.

Back-substitution

Once we know the value for X3, we can simply plug it into the lookup table g2(X3) to get the value
for X2, which we can then plug into the lookup table g1 to get the value for X1, and we recover the
MPE in one single backward pass.

The Entire Algorithm

Algorithm 1 The Max-Product Algorithm for HMMs
1: function MaxProductHMM(Φ1:n) . given an HMM with n states
2: for j = 1...n do . for all states
3: gj(Xj+1),Φj+1:n ← CreateLookupTable(Φj:n, Xj) . eliminate Xj

4: return {g1(X1)g(X2) . . . gn(∅)} . return DAG of lookup tables

Algorithm 2 Create lookup table gj by eliminating state Xj from a factor graph Φj:n.
1: function CreateLookupTable(Φj:n, Xj) . given reduced graph Φj:n

2: Remove all factors φi(Xi) that are contain Xj

3:
ψ(Xj , Xj+1)←

∏
i φi(Xi) . create the product factor ψ

4: gj(Xj+1), τ(Xj+1)← ψ(Xj , Xj+1) . perform argmax, max
5: Add the new factor τ(Xj+1) back into the graph
6: return gj(Xj+1),Φj+1:n . lookup table and reduced graph

The HMM max-product algorithm for any value of n is given in Algorithm 1, where we used the
shorthand notation Φj:n

∆
= φ(Xj , . . . , Xn) to denote a reduced factor graph. The algorithm proceeds

by eliminating one hidden state Xj at a time, starting with the complete HMM factor graph Φ1:n.
As we eliminate each variable Xj , the function EliminateOne produces a single lookup table
gj(Xj+1), as well as a reduced factor graph Φj+1:n on the remaining variables. After all variables
have been eliminated, the algorithm returns a chain of lookup tables that can be used to recover
the MPE in reverse elimination order.

9

1.7 The Sum-Product Algorithm for HMMs

The sum-product algorithm for HMMs is a slight tweak on the max-product algorithm that instead
produces a Bayes net that calculates the posterior probability P (X|Z). Whereas the max-product
produces a DAG of lookup tables, the sum-product produces a DAG of conditionals, i.e., a Bayes net.
This is particularly interesting if one is content with a maximum probable explanation or MPE, but instead
wants the full Bayesian probability distribution of which assignments to the states are more probable
than others. The fact that we recover this distribution in the form of a Bayes net again is satisfying,
because as we saw that is an economical representation of a probability distribution.

One might wonder about the wisdom of all this: we started with a Bayes net, converted to a factor
graph, and now end up with a Bayes net again? Indeed, but there are two important differences: the
first Bayes net represents the joint distribution P (X ,Z) and is very useful for modeling. However, the
second Bayes represents the posterior P (X|Z), and only has nodes for the random variables in X , hence
it is much smaller. Finally, in many practical cases we do not even bother with the modeling step, but
construct the factor graph directly from the measurements.

Algorithm 3 The Sum-Product Algorithm for HMMs
1: function SumProductHMM(Φ1:n) . given an HMM with n states
2: for j = 1...n do . for all states
3: p(Xj |Xj+1),Φj+1:n ← ApplyChainRule(Φj:n, Xj) . eliminate Xj

4: return p(X1|X2)p(X2|X3) . . . p(Xn) . return Bayes net

Algorithm 4 Eliminate variable Xj from a factor graph Φj:n.
1: function ApplyChainRule(Φj:n, Xj) . given reduced graph Φj:n

2: Remove all factors φi(Xi) that contain Xj

3: ψ(Xj , Xj+1)←
∏

i φi(Xi) . create the product factor ψ
4: p(Xj |Xj+1)τ(Xj+1)← ψ(Xj , Xj+1) . factorize the product ψ
5: Add the new factor τ(Xj+1) back into the graph
6: return p(Xj |Xj+1),Φj+1:n . conditional and reduced graph

The only tweak necessary is to replace the maximization and arg max in the elimination step with
the chain rule. Indeed, we factor each product factor ψ(Xj , Xj+1) into a conditional P (Xj |Xj+1) and
an (unnormalized) marginal τ(Xj+1):

P (Xj |Xj+1)τ(Xj+1)← ψ(Xj , Xj+1) (11)

The algorithm is called the sum-product algorithm because the marginal is obtained by summing over
all values of the state Xj :

τ(Xj+1) =
∑
xj

ψ(xj , Xj+1) (12)

We do not bother normalizing this into a proper distribution, as these marginals are just intermediate
steps in the algorithm. However, when computing the conditional, we do normalize, and is it so happens
the normalization constant is simply equal to 1/τ(Xj+1):

P (Xj |Xj+1) =
ψ(Xj , Xj+1)

τ(Xj+1)
(13)

10

In summary, the chain rule is implemented by 12 and 13. The entire algorithm is is listed as Algorithm
3.

Note that after we recover the Bayes net the algorithm terminates: there is no back-substitution step.
However, one might consider ancestral sampling as a type of back-substitution: the reverse elimination
order is always a topological sort of the resulting Bayes net! Hence, after the sum-product algorithm,
we can sample as many realizations from the posterior as we want: rather than just one MPE, we now
have thousands of plausible explanations, and ancestral sampling will yield them in exactly the correct
frequencies.

Sidebar

When we can produce samples X (s) from a posterior P (X|Z), we can calculate empirical means of any
real-valued function f(X) as follows:

EP (X|Z)[f(x)] ≈
∑

f(X (s))

For example, we can calculate the posterior mean of how far the robot traveled, either in Euclidean or
Manhattan distance. These estimators will have less variability than just calculating the distance for the
MPE, as they average over the entire probability distribution.

1.8 The Variable Elimination Algorithm

There exists a general algorithm that, given any factor graph, can compute the corresponding pos-
terior distribution p(X|Z) on the unknown variables X . Above we saw that a factor graph represents
the unnormalized posterior φ(X) ∝ P (X|Z) as a product of factors, typically generated directly
from the measurements. The variable elimination algorithm is a general recipe for converting any
factor graph back to a Bayes net, but now only on the unknown variables X .

In particular, the variable elimination algorithm is a way to factorize any factor graph of the
form

φ(X) = φ(X1, . . . , Xn) (14)

into a factored Bayes net probability density of the form

p(X) = p(X1|S1)p(X2|S2) . . . p(Xn) =
∏
j

p(Xj |Sj), (15)

where the separator S(Xj) is defined as the set of variables on which Xj is conditioned, after
elimination. While this factorization is akin to the chain rule, eliminating a sparse factor graph will
typically lead to small separators, although this depends on the chosen variable ordering X1, . . . , Xn.

Algorithm 5 The Variable Elimination Algorithm
1: function Eliminate(Φ1:n) . given a factor graph on n variables
2: for j = 1...n do . for all variables
3: p(Xj |Sj),Φj+1:n ← EliminateOne(Φj:n, Xj) . eliminate Xj

4: return p(X1|S1)p(X2|S2) . . . p(Xn) . return Bayes net

The variable elimination algorithm is listed as Algorithm 5, where we again used the shorthand
notation Φj:n

∆
= φ(Xj , . . . , Xn) to denote a partially eliminated factor graph. The algorithm pro-

ceeds by eliminating one variable Xj at a time, starting with the complete factor graph Φ1:n. As

11

Algorithm 6 Eliminate variable Xj from a factor graph Φj:n.
1: function EliminateOne(Φj:n, Xj) . given reduced graph Φj:n

2: Remove all factors φi(Xi) that are adjacent to Xj

3: S(Xj) ← all variables involved excluding Xj . the separator
4: ψ(Xj ,Sj)←

∏
i φi(Xi) . create the product factor ψ

5: p(Xj |Sj)τ(Sj)← ψ(Xj ,Sj) . factorize the product ψ
6: Add the new factor τ(Sj) back into the graph
7: return p(Xj |Sj),Φj+1:n . Conditional and reduced graph

we eliminate each variable Xj , the function EliminateOne produces a single conditional p(Xj |Sj),
as well as a reduced factor graph Φj+1:n on the remaining variables. After all variables have been
eliminated, the algorithm returns the resulting Bayes net with the desired factorization.

Above we gave the sum-product version of the variable elimination algorithm. The corresponding
max-product version produces a DAG of lookup tables instead, supporting the computation of the MPE.
In both cases, the complexity is similar but depends on the chosen variable ordering X1, . . . , Xn, as we
discuss next.

1.9 Complexity

The elimination algorithm has exponential complexity in the size of the largest separator.
The chosen variable ordering X1, . . . , Xn can affect the complexity dramatically. Some orderings

lead to smaller separators, and unfortunately it is hard to find an optimal ordering - although it can
be done for small graphs. A good heuristic is to greedily eliminate the variables with the smallest
separator first. Another is to recursively split the graph, and eliminate starting from the leaves of
the binary tree that is formed by the splitting process, but we will not discuss that here.

In the special case of HMMs, and in fact any singly connected graph, the complexity is linear
in the number of nodes. The reason is easiest to see for an HMM, as after conversion to a factor
graph the graph is just a chain. You can easily prove, by induction, that the size of the separator is
always one. It must be, by the way, as the resulting DAG is also singly connected (there is at most
one path from any node to any other node). Algorithms 1 and 3 are the max-product and sum-product
variants that we obtain when eliminating from left to right. However, it is possible to choose a different
ordering, even for HMMs. For example, if we eliminate from right to left, we get an equally efficient
algorithm, although all the intermediate product and marginal factors will be different.

Exercises

1. Perform symbolic elimination, i.e., just the graph part without computation, on some factor graphs
of interest.

2. Come up with an ordering for an HMM which is neither left-right or right-left which nevertheless
results in a singly-connected Bayes net.

3. Come up with an ordering to eliminate an HMM which does not lead to a singly-connected Bayes
net.

1.10 MAP Estimation

Maximum a posteriori estimation is at least as expensive as MPE or calculating the full posterior.
Remember that MAP estimation is only interested in a subset of the variables, and we partition

12

Figure 8: MAP estimation for X3 and X1, respectively: we simply change the elimination order to make
sure the variable(s) of interest are eliminated last.

the variables into three sets: the variables of interest X , the nuisance variables Y, and the observed
variables Z. The elimination algorithm is easy to modify to do MAP estimation, simply by making
sure that the variables of interest X are eliminated last.

Why does this work? We can easily see this if we take a “30,000 feet view” of the elimination
algorithm. In MAP estimation, we are interested in maximizing P (X|Z = z), but the Bayes net
gives us the joint distribution P (X ,Y,Z). The first step is to instantiate the evidence zand convert
to a factor graph f(X ,Y;Z = z). When we eliminate using the sum-product algorithm, using the
elimination order Y,X , we obtain a DAG encoding the resulting posterior as

P (Y|X ,Z = z)P (X|Z = z)

where P (X|Z = z) is the desired marginal distribution on X . Using max-product, the resulting
DAG for the MPE is

π(Y|X ,Z = z)π(X|Z = z)

where the lookup table π(X|Z = z) corresponds to the MAP estimate.
The higher complexity of MAP estimation derives from the fact that not all elimination orderings

are allowed anymore. In particular, the optimal ordering, or even approximately optimal orderings,
may all be incompatible with eliminating X last.

Exercises

1. Do MAP estimation for some factor graphs of interest.

2. Construct a small example where MAP estimation is more expensive than MPE, even when
using optimal orderings for both.

3. Think about the complexity of MAP estimation in an HMM. When is it not more expensive than
MPE?

13

Summary

We briefly summarize what we learned in this section:

1. Bayes filtering is a recursive state estimation scheme.

2. Hidden Markov models can be used to reason about a sequence of states observed indirectly via
sensors.

3. Naive inference in HMMs can be quite expensive.

4. Factor graphs are a new graphical language that make measurements implicit.

5. Any Bayes net (with or without evidence) can be converted to a factor graph.

6. The max-product algorithm for HMMs is an efficient computation for the MPE.

7. The sum-product algorithm returns the full Bayesian posterior as a Bayes net.

8. The variable elimination algorithm is a generalization that works for any factor graph.

9. The complexity of variable elimination depends on the elimination order.

10. MAP estimation is always as least as expensive, as it constrains the elimination order.

14

