Probability Theory Review

Belief representation: how do we represent our belief (hypothesis) of where the robot is located?

Continuous map with single hypothesis probability distribution

Belief representation

- Single-hypothesis belief: The robot's belief about its position is expressed as a single point on a map
- Advantage: no ambiguity, simplifies planning and decision making
- Disadvantage: does not represent ambiguity/uncertainty
- Multi-hypothesis belief: allows the robot to track (possibly infinitely) many possible positions.

In both of the above, the beliefs are represented as probabilities

Discrete Random Variables

- X denotes a random variable.
- X can take on a finite number of values in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- $P\left(X=x_{i}\right)$, or $P\left(x_{i}\right)$, is the probability that the random variable X takes on value x_{i}.
- $P\left(x_{i}\right)$ is called probability mass function.
- E.g.

$$
P(\text { Raining })=0.2
$$

Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$, or $p(x)$, is a probability density function.

$$
P(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

- E.g.

Probability Density Function

Since continuous probability functions are defined for an infinite number of points over a continuous interval, the probability at a single point is always 0 .

Joint Probability

- Notation
- $P(X=x$ and $Y=y)=P(x, y)$
- If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

Conditional Probability

- $P(x \mid y)$ is the probability of x given y

$$
\begin{aligned}
& P(x \mid y)=\frac{P(x, y)}{P(y)} \\
& \begin{aligned}
P(x, y) & =P(x \mid y) P(y) \\
& =P(y \mid x) P(x)
\end{aligned}
\end{aligned}
$$

- If X and Y are independent then

$$
P(x \mid y)=P(x)
$$

An Example

Roll two dice, observe x_{1} and x_{2}.
We know that there are 36 possible outcomes, all of which are equally likely (assuming the dice are fair).
It's easy to compute probabilities by simply counting outcomes:

- Probability $x_{1}=6$:

$$
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) \rightarrow P=\frac{6}{36}=\frac{1}{6}
$$

- Probability $x_{1}=6$ and x_{2} is even:

$$
(6,2),(6,4),(6,6) \rightarrow P=\frac{3}{36}=\frac{1}{12}
$$

- Probability x_{1} is even:

$$
\begin{aligned}
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{aligned} \quad \rightarrow \quad P=\frac{18}{36}=\frac{1}{2}
$$

Let's apply rules of conditional and joint probabilities:

Define events: $A: \mathrm{x}_{1}$ is even; $B: \mathrm{x}_{1}=6 ; C: \mathrm{x}_{2}$ is even; $D: \mathrm{x}_{2}=5$ From the previous page, we easily compute the following:

$$
P(A)=\frac{1}{2}, \quad P(B)=\frac{1}{6}, \quad P(C)=\frac{1}{2}, \quad P(D)=\frac{1}{6} .
$$

Let's look at some combinations of events:

- $P(A, B)=\frac{1}{6} \neq P(A) P(B)=\frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \rightarrow$ NOT independent
- $P(A, C)=\frac{9}{36}=P(A) P(C)=\frac{1}{2} \times \frac{1}{2} \rightarrow$ independent
- $P(B \mid A)=\frac{P(A, B)}{P(A)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3}$

This agrees with our intuition, since $\mathrm{x}_{1}=6$ in one third of the cases of x_{1} being even:

$$
\begin{aligned}
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{aligned}
$$

Law of Total Probability

Discrete case

$\sum_{v} P(x)=1$
$P(x)=\sum_{y} P(x, y)$
$P(x)=\sum_{y} P(x \mid y) P(y)$

Bayes Theorem

We know that conjunction is commutative:

$$
P(A, B)=P(B, A)
$$

Using the definition of conditional probability:

$$
\begin{gathered}
P(B \mid A) P(A)=P(B, A)=P(A, B)=P(A \mid B) P(B) \\
P(B \mid A) P(A)=P(A \mid B) P(B)
\end{gathered}
$$

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Bayes Theorem

We know that conjunction is commutative:
$P(A, R)=P(B, A)$
Using the definition 0 robability:

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Example

We roll one die, and an observer tells us things about the outcome. We want to know if $X=4$.

- Before we know anything, we believe $P(X=4)=\frac{1}{6}$. PRIOR
- Now, suppose the observer tells us that X is even. EVIDENCE

$$
P(X=4 \mid X \text { even })=\frac{P(X=4, X \text { even })}{P(X \text { even })}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3} \quad \text { BAYES }
$$

- We could also use Bayes to infer $P(X=$ even $\mid X=4)$:

$$
P(X \text { even } \mid X=4)=\frac{P(X=4, X \text { even })}{P(X=4)}=\frac{\frac{1}{6}}{\frac{1}{6}}=1
$$

Bayes Rule

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

x is robot pose and y is sensor data

$p(x)$	\rightarrow	Prior probability distribution
$p(x \mid y)$	\rightarrow	Posterior (conditional) probability distribution
$p(y \mid x)$	\rightarrow	Likelihood, model of the characteristics of the event
$p(y)$	\rightarrow	Evidence, does not depend on x

Bayes Rule

$$
\Rightarrow \quad P(x \mid y)=\frac{P(y \mid x) P(x)}{\sum_{x} P(y \mid x) P(x)}
$$

About likelihoods...

Why do we call the conditional probability $p(y \mid x)$ a likelihood, but we call $p(x \mid y)$ the posterior??

We define the likelihood $\mathcal{L}(x)$ to be a function of x, not a function of y :

$$
\mathcal{L}(x)=p(y \mid x)
$$

Note: $\mathcal{L}(x)$ is not a probability. In particular,

$$
\sum_{x} \mathcal{L}(x) \neq 1
$$

Normalization Coefficient

$$
P(x \mid z)=\frac{P(z \mid x) P(x)}{P(z)}
$$

Note that the denominator is independent of x, and as a result will typically be the same for any value of x in the posterior $P(x \mid z)$.

Therefore, we typically represent the normalization term by the coefficient $\eta=[P(z)]^{-1}$ and Bayes equation is written as

$$
P(x \mid z)=\eta P(z \mid x) P(x)
$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z (e.g., distance sensor reports an obstacle 40cm in front of the robot)
- What is $P($ open $\mid z)$?

Causal vs. Diagnostic Reasoning

- $P($ open $\mid z)$ is diagnostic.
- $P(z \mid o p e n)$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

Use law of total probability: $P(z)=\sum_{y} P(z \mid y) P(y)$

Example

$$
\begin{aligned}
& P(z \mid \text { open })=0.6 \quad P(z \mid \neg \text { open })=0.3 \\
& P(\text { open })=P(\neg \text { open })=0.5
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })} \\
& P(\text { open } \mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{2}{3}=0.67
\end{aligned}
$$

z raises the probability that the door is open.

Lets try the measurement again...

$$
P(x \mid z)=\eta P(z \mid x) P(x)
$$

Given information: $P\left(z_{1} \mid\right.$ open $)=0.6$ $P\left(z_{1} \mid\right.$ closed $)=0.3$
$P($ open $)=0.5$
$P($ closed $)=0.5$

$$
\begin{aligned}
& P\left(\text { open } \mid z_{1}\right)=\eta P\left(z_{1} \mid \text { open }\right) P(\text { open }) \\
& P\left(\text { open } \mid z_{1}\right)=\eta 0.6 * 0.5=\eta 0.3
\end{aligned}
$$

Unlike before, we don't yet have the answer because we still have the unknown term η that indicates that we need to normalize to get the true probability.

$$
\begin{aligned}
& P\left(\text { closed } \mid z_{1}\right)=\eta P\left(z_{1} \mid \text { closed }\right) P(\text { closed }) \\
& P\left(\text { closed } \mid z_{1}\right)=\eta 0.3 * 0.5=\eta 0.15 \\
& \eta=(0.3+0.15)^{-1}=2.22 \\
& P\left(\text { open } \mid z_{1}\right)=0.67
\end{aligned}
$$

Combining Evidence

- Suppose our robot obtains another observation z_{2}. e.g. we made a second sensor reading with the same sensor, and it reports an obstacle 35 cm away
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$?

Generalizing the Condition with Bayes Theorem

The usual version of Bayes is conditioned on a single event:

$$
P(x \mid z)=\frac{P(z \mid x) P(x)}{P(z)}
$$

In fact, we can add any arbitrary context variables on the right side of the conditioning bar, so long as we apply them in every term.

$$
P(x \mid z, \text { Anything })=\frac{P(z \mid x, \text { Anything }) P(x \mid \text { Anything })}{P(z \mid \text { Anything })}
$$

Multiple Measurements

$$
\begin{gathered}
P(x \mid z, \text { Anything })=\frac{P(z \mid x, \text { Anything }) P(x \mid \text { Anything })}{P(z \mid \text { Anything })} \\
P\left(x \mid z_{2}, \text { Anything }\right)=\frac{P\left(z_{2} \mid x, \text { Anything }\right) P(x \mid \text { Anything })}{P\left(z_{2} \mid \text { Anything }\right)} \\
P\left(x \mid z_{2}, z_{1}\right)=\frac{P\left(z_{2} \mid x, z_{1}\right) P\left(x \mid z_{1}\right)}{P\left(z_{2} \mid z_{1}\right)}
\end{gathered}
$$

At time $t=2$, everything earlier is merely context information.

Multiple Measurements (cont)

$$
P\left(x \mid z_{2}, z_{1}\right)=\frac{P\left(z_{2} \mid x, z_{1}\right) P\left(x \mid z_{1}\right)}{P\left(z_{2} \mid z_{1}\right)}
$$

At time $t=2$

- $P\left(x \mid z_{1}\right)$ is the prior... what we believe about the state x, based on history of measurements before $t=2$
- $P\left(x \mid z_{2}, z_{1}\right)$ is the posterior... what we believe about the state x, based on history of measurements, including $t=2$
- $P\left(z_{2} \mid x, z_{1}\right)$... If we really know the state x, then what we measured at time $t=1$ won't affect what we expect to measure at time $t=2$

Reference

- Probabilistic Robotics by Thrun, Burgard and Fox.. Chapter 2 (available on Piazza)

