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Belief representation: how do we represent 
our belief (hypothesis) of where the robot is 
located?
Continuous map with single 
hypothesis probability 
distribution 

Continuous map with multiple 
hypotheses probability 
distribution 

Discretized map with multiple 
hypotheses probability 
distribution 

Discretized topological map 
with with multiple hypotheses 
probability distribution 



Belief representation

• Single-hypothesis belief: The robot’s belief about its position is 
expressed as a single point on a map
• Advantage: no ambiguity, simplifies planning and decision making
• Disadvantage: does not represent ambiguity/uncertainty

• Multi-hypothesis belief: allows the robot to track (possibly 
infinitely) many possible positions.

In both of the above, the beliefs are represented as probabilities



Discrete Random Variables

• X denotes a random variable.

• X can take on a finite number of values in {x1, x2, …, xn}.

• P(X=xi), or P(xi), is the probability that the random variable X
takes on value xi. 

• P(xi) is called probability mass function.

• E.g.
2.0)( =RainingP



Continuous Random Variables

• 𝑋 takes on values in the continuum.

• 𝑝(𝑋 = 𝑥), or 𝑝(𝑥), is a probability density function.

• E.g.
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Probability Density Function 

Since continuous probability functions are defined for an infinite number of 
points over a continuous interval, the probability at a single point is always 0. 

x

p(x)
Magnitude of curve could be greater 
than 1 in some areas.  The total area 
under the curve must add up to 1.



Joint Probability

• Notation
• 𝑃(𝑋 = 𝑥 𝑎𝑛𝑑 𝑌 = 𝑦) = 𝑃(𝑥, 𝑦)

• If X and Y are independent then 
𝑃(𝑥, 𝑦) = 𝑃(𝑥) 𝑃(𝑦)



Conditional Probability

• 𝑃(𝑥 | 𝑦) is the probability of x given y

𝑃(𝑥 | 𝑦) = / 0,1
/ 1

𝑃(𝑥, 𝑦) = 𝑃(𝑥 | 𝑦) 𝑃(𝑦)
= 𝑃(𝑦 | 𝑥) 𝑃(𝑥)

• If X and Y are independent then
𝑃(𝑥 | 𝑦) = 𝑃(𝑥)



An Example
Roll two dice, observe 𝑥2and 𝑥3.
We know that there are 36 possible outcomes, all of which are 
equally likely (assuming the dice are fair).
It’s easy to compute probabilities by simply counting outcomes:
• Probability 𝑥2 = 6: 

6,1 , 6,2 , 6,3 , 6,4 , 6,5 , (6,6) → 𝑃 =
6
36

=
1
6

• Probability 𝑥2 = 6 and 𝑥3 is even:
6,2 , 6,4 , (6,6) → 𝑃 =

3
36 =

1
12

• Probability 𝑥2is even:

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

→ 𝑃 =
18
36

=
1
2



Let’s apply rules of conditional and joint probabilities:
Define events: 𝐴: x2 is even; 𝐵: x2 = 6; 𝐶: x3is even; 𝐷: x3 = 5
From the previous page, we easily compute the following:

𝑃 𝐴 =
1
2 , 𝑃 𝐵 =

1
6 , 𝑃 𝐶 =

1
2 , 𝑃 𝐷 =

1
6 .

Let’s look at some combinations of events:

• 𝑃 𝐴, 𝐵 = 2
C ≠ 𝑃 𝐴 𝑃 𝐵 = 2

C×
2
3 =

2
23 → NOT independent

• 𝑃 𝐴, 𝐶 = F
GC = 𝑃 𝐴 𝑃 𝐶 = 2

3×
2
3 → independent

• 𝑃 𝐵|𝐴 = /(H,I)
/(H) =

J
K
J
L
= 2

G

This agrees with our intuition, since x2 = 6 in one third of the cases of x2being even:
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)



Law of Total Probability
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Discrete case
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Continuous case
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Bayes Theorem
We know that conjunction is commutative:

𝑃 𝐴, 𝐵 = 𝑃 𝐵, 𝐴

Using the definition of conditional probability:

𝑃 𝐵 𝐴 𝑃 𝐴 = 𝑃 𝐵, 𝐴 = 𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵

𝑃 𝐵 𝐴 𝑃 𝐴 = 𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃 𝐵 𝐴 =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)



Bayes Theorem
We know that conjunction is commutative:

𝑃 𝐴, 𝐵 = 𝑃 𝐵, 𝐴

Using the definition of conditional probability:

𝑃 𝐵 𝐴 𝑃 𝐴 = 𝑃 𝐵, 𝐴 = 𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵

𝑃 𝐵 𝐴 𝑃 𝐴 = 𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃 𝐵 𝐴 =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)



Example

We roll one die, and an observer tells us things about the outcome. 
We want to know if 𝑋 = 4.

• Before we know anything, we believe 𝑃 𝑋 = 4 = 2
C.   PRIOR

• Now, suppose the observer tells us that 𝑋is even.   EVIDENCE

𝑃 𝑋 = 4 𝑋 even) = /(PQR,P STSU)
/(P STSU)

=
J
K
J
L
= 2

G
BAYES

• We could also use Bayes to infer 𝑃 𝑋 = even 𝑋 = 4):

𝑃 𝑋 even 𝑋 = 4) =
𝑃(𝑋 = 4, 𝑋 even)

𝑃(𝑋 = 4)
=
1
6
1
6
= 1
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Bayes Rule

𝒙 is robot pose and 𝒚 is sensor data



Bayes Rule

evidence
prior likelihood
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About likelihoods…

Why do we call the conditional probability 𝑝(𝑦|𝑥) a 
likelihood, but we call 𝑝(𝑥|𝑦) the posterior??

We define the likelihood ℒ(𝑥) to be a function of 𝑥, 
not a function of 𝑦 :

ℒ 𝑥 = 𝑝 𝑦 𝑥

Note: ℒ 𝑥 is not a probability. In particular,

Y
0

ℒ 𝑥 ≠ 1



Normalization Coefficient

𝑃 𝑥 𝑧 =
𝑃 𝑧 𝑥 𝑃(𝑥)

𝑃(𝑧)

Note that the denominator is independent of 𝑥, and 
as a result will typically be the same for any value of 𝑥
in the posterior 𝑃 𝑥 𝑧 .

Therefore, we typically represent the normalization 
term by the coefficient 𝜂 = [𝑃 𝑧 ]^2 and Bayes 
equation is written as

𝑃 𝑥 𝑧 = 𝜂𝑃 𝑧 𝑥 𝑃(𝑥)



Simple Example of State Estimation

• Suppose a robot obtains measurement 𝑧 (e.g., distance 
sensor reports an obstacle 40cm in front of the robot)
• What is 𝑃(𝑜𝑝𝑒𝑛|𝑧)?



Causal vs. Diagnostic Reasoning

• 𝑃(𝑜𝑝𝑒𝑛|𝑧) is diagnostic.
• 𝑃(𝑧|𝑜𝑝𝑒𝑛) is causal.
• Often causal knowledge is easier to obtain.
• Bayes rule allows us to use causal knowledge:

)(
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openPopenzPzopenP =

Comes from sensor model.

Use law of total probability: 𝑃 𝑧 = ∑1𝑃 𝑧 𝑦 𝑃(𝑦)



Example

} P(z|open) = 0.6 P(z|¬open) = 0.3
} P(open) = P(¬open) = 0.5

67.0
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𝑧 raises the probability that the door is open.
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Lets try the measurement again…

𝑃 𝑥 𝑧 = 𝜂 𝑃 𝑧 𝑥 𝑃(𝑥)

𝑃 𝑜𝑝𝑒𝑛 𝑧2 = 𝜂 𝑃 𝑧2 𝑜𝑝𝑒𝑛 𝑃(𝑜𝑝𝑒𝑛)

𝑃 𝑜𝑝𝑒𝑛 𝑧2 = 𝜂 0.6 ∗ 0.5 = 𝜂 0.3
Given information:
𝑃(𝑧2|𝑜𝑝𝑒𝑛) = 0.6
𝑃(𝑧2|𝑐𝑙𝑜𝑠𝑒𝑑) = 0.3
𝑃(𝑜𝑝𝑒𝑛) = 0.5
𝑃(𝑐𝑙𝑜𝑠𝑒𝑑) = 0.5

Unlike before, we don’t yet have the answer because we 
still have the unknown term 𝜂 that indicates that we need 
to normalize to get the true probability. 

𝑃 𝑐𝑙𝑜𝑠𝑒𝑑 𝑧2 = 𝜂 𝑃 𝑧2 𝑐𝑙𝑜𝑠𝑒𝑑 𝑃(𝑐𝑙𝑜𝑠𝑒𝑑)

𝑃 𝑐𝑙𝑜𝑠𝑒𝑑 𝑧2 = 𝜂 0.3 ∗ 0.5 = 𝜂 0.15

𝜂 = 0.3 + 0.15 ^2 = 2.22

𝑷 𝒐𝒑𝒆𝒏 𝒛𝟏 = 𝟎. 𝟔𝟕



Combining Evidence

• Suppose our robot obtains another observation z2.  e.g. we 
made a second sensor reading with the same sensor, and it 
reports an obstacle 35cm away

• How can we integrate this new information?

• More generally, how can we estimate
P(x| z1...zn )?



Generalizing the Condition
with Bayes Theorem

𝑃 𝑥 𝑧, 𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔 =
𝑃 𝑧 𝑥, 𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)𝑃(𝑥|𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)

𝑃(𝑧|𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)

𝑃 𝑥 𝑧 =
𝑃 𝑧 𝑥 𝑃(𝑥)

𝑃(𝑧)

In fact, we can add any arbitrary context variables on the right side of the 
conditioning bar, so long as we apply them in every term.

The usual version of Bayes is conditioned on a single event:



Multiple Measurements

𝑃 𝑥 𝑧, 𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔 =
𝑃 𝑧 𝑥, 𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)𝑃(𝑥|𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)

𝑃(𝑧|𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)

𝑃 𝑥 𝑧3, 𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔 =
𝑃 𝑧3 𝑥, 𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)𝑃(𝑥|𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)

𝑃(𝑧3|𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔)

𝑃 𝑥 𝑧3, 𝑧2 =
𝑃 𝑧3 𝑥, 𝑧2)𝑃(𝑥|𝑧2)

𝑃(𝑧3|𝑧2)

At time 𝑡 = 2, everything earlier is merely context information.



Multiple Measurements (cont)

𝑃 𝑥 𝑧3, 𝑧2 =
𝑃 𝑧3 𝑥, 𝑧2)𝑃(𝑥|𝑧2)

𝑃(𝑧3|𝑧2)

At time 𝑡 = 2
• 𝑃(𝑥|𝑧2) is the prior… what we believe about the state 𝑥, based on 

history of measurements before 𝑡 = 2
• 𝑃 𝑥 𝑧3, 𝑧2 is the posterior… what we believe about the state 𝑥, 

based on history of measurements, including 𝑡 = 2
• 𝑃 𝑧3 𝑥, 𝑧2) … If we really know the state 𝑥, then what we measured 

at time 𝑡 = 1 won’t affect what we expect to measure at time 𝑡 = 2



Reference

• Probabilistic Robotics by Thrun, Burgard and Fox..  
Chapter 2 (available on Piazza)


