
Sampling-Based Methods 
for Path Planning

With so many slides and ideas from so many people:

Howie Choset, Nancy Amato, David Hsu, Sonia Chernova, 
Steve LaValle, James Kuffner, Greg Hager 



Difficulty with classic approaches to path planning

 Running time increases exponentially with the dimension of the 

configuration space.

 For a d-dimension grid with 10 grid points on each dimension, how many 

grid cells are there?

 Several variants of the path planning problem have been proven 

to be PSPACE-hard.

10d



Completeness

 Complete algorithm  Slow

 A complete algorithm finds a path if one exists and reports no otherwise 

in finite time.

 Example: visibility graph for 2D problems (translation in the plane) and 

polygonal robot and obstacles

 Heuristic algorithm  Unreliable

 Example: potential field (we’ll see it soon)

 Probabilistic completeness

 Intuition: If there is a solution path, the algorithm will find it with high 

probability.



The Rise of Monte Carlo Techniques

• KEY IDEA:
Rather than exhaustively explore ALL possibilities, randomly explore a smaller subset of 
possibilities while keeping track of progress

• Facilities “probing” deeper in a search tree much earlier than any exhaustive algorithm can

• What’s the catch?
Typically we must sacrifice both completeness and optimality
Classic tradeoff between solution quality and runtime performace

Search for collision-free path 

only by sampling points.

Sampling Based Planning:



Probabilistic Roadmaps



Probabilistic Road Map (PRM)

• Probabilistic Roadmap methods proceed in two phases: 

1.Preprocessing Phase – to construct the roadmap G 

2.Query Phase – to search given 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙

The roadmap is an undirected graph G = (N, E). The nodes in N 
are a set of configurations of the robot chosen over C-free. The 
edges in E correspond to feasible straight-line paths. 



Probabilistic Roadmap (PRM): 
multiple queries

free space

[Kavraki, Svetska, Latombe,Overmars, 96]

local path

milestone



Assumptions

 Static obstacles

 Many queries to be processed in the same 

environment

 Examples

 Navigation in static virtual environments

 Robot manipulator arm in a workcell

 Advantages: 

 Amortize the cost of planning over many problems

 Probabilistically complete



Overview

Precomputation: roadmap construction

 Uniform sampling

 Resampling (expansion)

Query processing



Uniform sampling
Input: geometry of the moving object & obstacles

Output: roadmap G = (V, E)

1: V   and E  .

2: repeat

3:   q  a configuration sampled uniformly at random from C.

4:    if CLEAR(q)then

5: Add q to V.

6:      Nq  a set of nodes in V that are close to q.

6:      for each q’ Nq, in order of increasing d(q,q’)

7:        if LINK(q’,q)then

8:          Add an edge between q and q’ to E.



Some terminology

 The graph G is called a probabilistic roadmap. 

 The nodes in G are called milestones.



How do we determine a random free configuration?

 We want the nodes of V to be a uniform sampling of Qfree

 Draw each of its coordinates from the interval of values of the 

corresponding degrees of freedom. (Use the uniform probability 

distribution over the interval)

 Check for collision both with robot itself and with obstacles

 If collision free, add to V, otherwise discard

 What about rotations? Strategies for sampling orientation are beyond 

the scope of this class. Since Duckiebots live in the plane, we could 

merely sample uniformly in the interval [0, 2𝜋].



What’s the local path planner: Link(q’,q) ?

 There are plenty of possibilities

 Nondeterministic (include a randomized “wandering” component)

 We’ll have to store local paths in roadmap

 Powerful

 Slower but maybe we’ll need fewer nodes if we do some hard work during roadmap 

construction?

 Fast and simple

 Less powerful, Roadmap will need more nodes



Go with the fast local planner

 Need to make sure start and goal configurations can connect to graph, which 

requires a somewhat dense roadmap

 Can reuse local planner at query time to connect start and goal 

configurations

 Don’t need to memorize local paths



Distance Functions: d(q,q’)

 Really, d should reflect the likelihood that the planner will fail to find a path

 close points, likely to succeed

 far away, less likely

 This is often related to the area swept out by the robot along the local path:

 very hard to compute exactly

 usually heuristic distance is used

 Typical approaches

 Euclidean distance on some embedding of c-space

 Create a weighted combination of translation and rotational “distances”

 Weighted sum of distances for a set of “control points” on the robot



Difficulty

 Many small connected components



Resampling (expansion)

 Failure rate 

 Weight

 Resampling probability 




p
pr

qr
qw

)(

)(
)(

)()(Pr qwq 

𝑟 𝑞 =
𝑓(𝑞)

𝑛 𝑞 + 1

• 𝑓 𝑞 =# of failed attempts to connect 𝑞 to the roadmap
• 𝑛 𝑞 = total # of attempts to connect 𝑞 to the roadmap



Now that we have weights…

• To expand a node c, we compute a short random-bounce walk 
starting from c.

This means

– Repeatedly pick at random a direction of motion in C-space and 
move in this direction until an obstacle is hit.

– When a collision occurs, choose a new random direction.

– The final configuration n and the edge (c,n) are inserted into the 
roadmap and the path is memorized. 

– Try to connect n to the other connected components like in the 
construction step.

– Weights are only computed once at the beginning and not 
modified as nodes are added to the roadmap.



Resampling (expansion)



Query processing

 Connect qinit and qgoal to the roadmap

 Start at qinit and qgoal, perform a random walk, and try to connect 

with one of the milestones nearby

 Try multiple times



Error

 If a path is returned, the answer is always correct.

 If no path is found, the answer may or may not be correct. We 

hope it is correct with high probability. 



Why does it work? Intuition

 A small number of milestones almost “cover” the 

entire configuration space. 

 Rigorous definitions and exist (of course!)


