Sampling-Based Methods
for Path Planning

With so many slides and ideas from so many people:

Howie Choset, Nancy Amato, David Hsu, Sonia Chernova,
Steve LaValle, James Kuffner, Greg Hager

Difficulty with classic approaches to path planning

Running time increases exponentially with the dimension of the
configuration space.

= For a d-dimension grid with 10 grid points on each dimension, how many
grid cells are there?

10d

Several variants of the path planning problem have been proven
to be PSPACE-hard.

Completeness

Complete algorithm - Slow

= Acomplete algorithm finds a path if one exists and reports no otherwise
In finite time.

= Example: visibility graph for 2D problems (translation in the plane) and
polygonal robot and obstacles

Heuristic algorithm - Unreliable
= Example: potential field (we'll see it soon)

Probabilistic completeness

= [ntuition: If there is a solution path, the algorithm will find it with high
probability.

The Rise of Monte Carlo Techniques

« KEY IDEA:
Rather than exhaustively explore ALL possibilities, randomly explore a smaller subset of

possibilities while keeping track of progress

» Facilities “probing” deeper in a search tree much earlier than any exhaustive algorithm can

 What's the catch?
Typically we must sacrifice both completeness and optimality
Classic tradeoff between solution quality and runtime performace

Sampling Based Planning:

Search for collision-free path
only by sampling points.

Probabilistic Roadmaps

Probabilistic Road Map (PRM)

* Probabilistic Roadmap methods proceed in two phases:

1.Preprocessing Phase - to construct the roadmap G

2.Query Phase - to search given q;;; and qg4q;

The roadmap is an undirected graph ¢ = (N, E). The nodes in N
are a set of configurations of the robot chosen over C-free. The
edges in E correspond to feasible straight-line paths.

Probabilistic Roadmap (PRM):
multiple queries

local path free space

milestone

[Kavraki, Svetska, Latombe,Overmars, 96]

Assumptions

Static obstacles

Many queries to be processed in the same
environment

Examples

= Navigation in static virtual environments

= Robot manipulator arm in a workcell
Advantages:

= Amortize the cost of planning over many problems
= Probabillistically complete

Overview

Precomputation: roadmap construction
= Uniform sampling
= Resampling (expansion)

Query processing

Uniform sampling

Input: geometry of the moving object & obstacles
Output: roadmap G = (V, E)

V <« and E « <.
repeat
g < a configuration sampled uniformly at random from C.
if CLEAR (g) then
Add g to V.
Nq < a set of nodes in V that are close to g.
for each g’e Ny in order of increasing d(g,q’)
if LINK(g’, g) then
Add an edge between g and g’ to E.

O J o o O &~ W B B

Some terminology

The graph G is called a probabilistic roadmap.
The nodes in G are called milestones.

How do we determine a random free configuration?

We want the nodes of VV to be a uniform sampling of Q...

= Draw each of its coordinates from the interval of values of the
corresponding degrees of freedom. (Use the uniform probability
distribution over the interval)

m Check for collision both with robot itself and with obstacles
m If collision free, add to V, otherwise discard

= What about rotations? Strategies for sampling orientation are beyond
the scope of this class. Since Duckiebots live in the plane, we could
merely sample uniformly in the interval [0, 2m].

What's the local path planner: Link(q',q) ?

There are plenty of possibilities

= Nondeterministic (include a randomized “wandering” component)
We’'ll have to store local paths in roadmap

m Powerful

Slower but maybe we’ll need fewer nodes if we do some hard work during roadmap
construction?

= Fast and simple
Less powerful, Roadmap will need more nodes

Go with the fast local planner

Need to make sure start and goal configurations can connect to graph, which
requires a somewhat dense roadmap

Can reuse local planner at query time to connect start and goal
configurations

Don’t need to memorize local paths

Distance Functions: d(q.q’)

Really, d should reflect the likelihood that the planner will fail to find a path
m close points, likely to succeed
m far away, less likely

This is often related to the area swept out by the robot along the local path:
= very hard to compute exactly
= usually heuristic distance is used

Typical approaches
= Euclidean distance on some embedding of c-space
= Create a weighted combination of translation and rotational “distances”
m Weighted sum of distances for a set of “control points” on the robot

Difficulty

Many small connected components

Resampling (expansion)

. @
Failure rate r(gq) = " OFS
r(q)
Weight w(q) =
2. r(p)

Resampling probability Pr(q) =w(q)

* f(q) =# of failed attempts to connect g to the roadmap
* n(qg) = total # of attempts to connect g to the roadmap

Now that we have weights...

- To expand a node ¢, we compute a short random-bounce walk
starting from c.

This means

Repeatedly pick at random a direction of motion in C-space and
move in this direction until an obstacle is hit.

When a collision occurs, choose a new random direction.

The final configuration n and the edge (c,n) are inserted into the
roadmap and the path is memorized.

Try to connect n to the other connected components like in the
construction step.

Weights are only computed once at the beginning and not
modified as nodes are added to the roadmap.

Resampling (expansion)

Query processing

Connect g;,;; and g, to the roadmap

Start at g;;; and qg,,, perform a random walk, and try to connect
with one of the milestones nearby

Try multiple times

Error

f a path is returned, the answer is always correct.

f no path Is found, the answer may or may not be correct. We
nope it is correct with high probability.

Why does it work? Intuition

A small number of milestones almost “cover” the
entire configuration space.

Rigorous definitions and exist (of course!)

