
CS 3630!

Lecture 8: 
Monte Carlo Inference



Topics

• 1. Continuous Densities
• 2. Gaussian Densities
• 3. Bayes Nets & Mixture Models
• 4. Cont. Measurement Models
• 5. Cont. Motion Models

• 6. Simulating Cont. Bayes Nets
• 7. Sampling as Approximation
• 8. Importance Sampling
• 9. Particle Filters & MCL
• 10. Monte Carlo & Elimination



Motivation

• Robots live in a continuous world
• To localize the robot, we need probabilistic inference
• Many of the concepts we discussed before generalize
• In many cases exact inference is intractable -> sampling
• A popular class of algorithm: Particle filters & Monte Carlo Localization



Remember: the Bayes Filter

• Two phases: a. Prediction Phase
b. Measurement Phase



Representations

Line-based map (~100 lines)The real map with walls, doors and 
furniture.



Representations

Grid-based map (3000 cells, 
each 50cm x 50cm)

Topological map (50 features, 
18 nodes)



Belief representation: how do we represent 
our belief of where the robot is located?

Continuous map with single 
hypothesis probability 
distribution 

Continuous map with multiple 
hypotheses probability 
distribution 

Discretized map with multiple 
hypotheses probability 
distribution 

Discretized topological map 
with with multiple hypotheses 
probability distribution 



1. Continuous Probability Densities

• 𝑋 takes on values in the continuum.

• 𝑝(𝑋 = 𝑥), or 𝑝(𝑥), is a probability density function.

• E.g.
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Probability Density Function 

Since continuous probability functions are defined for an infinite number of 
points over a continuous interval, the probability at a single point is always 0. 

x

p(x)
Magnitude of curve could be greater 
than 1 in some areas.  The total area 
under the curve must add up to 1.



2. Gaussian Densities

• Easy: negative log is quadratic
• Also known as the “bell curve”
• One of a few densities for which sampling is easy



1D examples

• From Wikipedia!



Multivariate Example (2D)

• http://pgfplots.net/tikz/examples/bivariate-normal-distribution/



2. Continuous Bayes Nets

• As before, but now states 
S, observations O, and 
action A can all be 
continuous.
• Terminology: x, z, u
• Hence: measurement 

models and state transition 
models are continuous.
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Important aside: Mixture Models

• We can mix discrete and 
continuous
• Most important 

example: mixture of 
continuous densities
• Example: Gaussian 

mixture model
• Sampling: sample 

component, then 
sample from Gaussian:

p(x,C)=p(x|C)P(C)

𝐶 𝑥



4. Continuous Measurement Models

• We need a measurement function and a noise model
• Example: bearing to a landmark l:



Adding a noise model

• Generative model of measurement
• Assuming Gaussian noise:



Adding a noise model

• Generative model of measurement
• Assuming Gaussian noise:

• Putting it together:



Other sensor models

Laser sensor Sonar sensor



5. Continuous Motion Models
• Similar for state transition, but we now have a motion model
• Motion model g(x,u) takes state x and control u
• Multivariate noise model with covariance Q:



6. Simulating from a Continuous Bayes Net

1. Slice 1:
a) Sample from  p(x1)
b) Sense p(z1|x1)
c) Sample from p(u1)

2. Slice 2:
a) Act p(x2|x1 , u1)
b) Sense p(z2|x2)
c) Sample from p(u2)

3. Slice 3:
a) …

𝑥' 𝑥( 𝑥)

𝑧' 𝑧( 𝑧)

𝑢' 𝑢(



Example: motion 
model only

• The infamous 
“banana density”
• Happens because 

we also sample 
heading \theta
• Clearly non-

Gaussian!



7. Sampling to Approximate Densities

• As banana distribution illustrates, densities can become arbitrarily 
complex, even when noise models are Gaussian
• Issue is nonlinear measurement and noise models
• One way out: Parzen window density estimation (mixtures!)

• Other way out: sampling!

(Wikipedia)



Probability of Robot Location

P(Robot Location)

X

Y

State space = 2D, infinite #states



Sampling as Representation

P(Robot Location)

X

Y



Sampling Advantages
• Arbitrary densities
• Memory = O(#samples)
• Only in “Typical Set”
• Great visualization tool !

• minus: Approximate



8. Importance Sampling

• Additionally use weights to represent a density

• Generic importance sampling idea:
• We want to sample from p(x), but we don’t know how
• sample x(r) from q(x), which some way we can sample from
• give each sample x(r) an importance weight equal to p(x)/q(x)



Importance Sampling
• Sample x(r) from q(x)
• p r = p(x(r))/q(x(r))

Image by MacKay

p(x)
q(x)



Example: Bayes law via importance sampling

{x(r),y(r)~Prior(x,y), wr=P(Z|x(r),y(r)) }



9. Particle Filters & Monte Carlo Localization

• Bayes filter using importance sampling for Bayes law
• First appeared in 70’s, re-discovered by Kitagawa, 
• Isard & Blake rediscovered in computer vision, as CONDENSATION
• Monte Carlo Localization in robotics



Particles

• Each particle is a guess about where the robot might be

𝑥
𝑦
𝜃



1. Prediction Phase

u

Motion Model

P(xt|   ,u)



2. Measurement Phase

Sensor Model

P(Z|xt)



3. Resampling Step

O(N)



34

Uniform distribution
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Sense
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Before resampling
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After resampling
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Sense 



39

Before resampling 



40

After resampling



41

Move



42

Sense 



43

Before resampling



44

After resampling



45

Move 
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Sense



47

Before resampling



48

After resampling



49

Move 



Particle Filter Tracking

Xt-2 Xt-1State

Zt-2 Zt-1Measurement

Xt

Zt

Monte Carlo Approximation of Posterior:



Bayes Filter and Particle Filter

Monte Carlo Approximation:

Recursive Bayes Filter Equation:
Motion Model

Predictive Density



Particle Filter

π(3)π(1)
π(2)

Empirical predictive density = Mixture Model

First appeared in 70’s, re-discovered by Kitagawa, Isard, … 



Monte Carlo Localization

weighted S’
k SkS’

kSk-1

Predict Weight Resample



Monte Carlo Localization (99)



10. Connection with Elimination Algorithm*

• In class, if time remains…



Summary

• Continuous Densities
• Gaussian Densities
• Bayes Nets & Mixture Models
• Cont. Measurement Models
• Cont. Motion Models

• Simulating Cont. Bayes Nets
• Sampling as Approximation
• Importance Sampling
• Particle Filters and Monte Carlo 

Localization
• Monte Carlo & Elimination


