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Lecture 8

Monte Carlo Inference




Topics

* 1. Continuous Densities

* 2. Gaussian Densities

* 3. Bayes Nets & Mixture Models
* 4. Cont. Measurement Models

e 5. Cont. Motion Models

* 6. Simulating Cont. Bayes Nets
* 7. Sampling as Approximation
* 8. Importance Sampling
* 9. Particle Filters & MCL
* 10. Monte Carlo & Elimination



Motivation

* Robots live in a continuous world

* To localize the robot, we need probabilistic inference

* Many of the concepts we discussed before generalize

* In many cases exact inference is intractable -> sampling

* A popular class of algorithm: Particle filters & Monte Carlo Localization



Remember: the Bayes Filter

* Two phases: a. Prediction Phase
b. Measurement Phase
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Representations
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The real map with walls, doors and
furniture.

Line-based map (~100 lines)



Representations

bbby

Topological map (50 features,
18 nodes)

Grid-based map (3000 cells,
each 50cm x 50cm)



Belief representation: how do we represent
our belief of where the robot is located?

Discretized map with multiple
hypotheses probability
distribution

Discretized topological map
with with multiple hypotheses
probability distribution

probability P
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1. Continuous Probability Densities

* X takes on values in the continuum.

* (X = x), or p(x), is a probability density function.

P(x € (a,b)) = j p(x)dx

p(x) |
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Probability Density Function

Magnitude of curve could be greater
p(x) than 1 in some areas. The total area
under the curve must add up to 1.
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Since continuous probability functions are defined for an infinite number of
points over a continuous interval, the probability at a single point is always O.



2. Gaussian Densities

A Gaussian probability density is given by
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where g € R™ is the mean, X is an n X n covariance matrix, and
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denotes the squared Mahalanobis distance.
* Easy: negative log is quadratic

* Also known as the “bell curve”
* One of a few densities for which sampling is easy



1D examples
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Multivariate Example (2
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* http://pgfplots.net/tikz/examples/bivariate-normal-distribution/



2. Continuous Bayes Nets

* As before, but now states
S, observations O, and
action A can all be

continuous.
_ X1 X2
* Terminology: x, z, u
* Hence: measurement
models and state transition
models are continuous.




Important aside: Mixture Models

)

 \We can mix discrete and
continuous

* Most important
example: mixture of
continuous densities

* Example: Gaussian
mixture model

* Sampling: sample
component, then
sample from Gaussian:

p(x,0)=px|COP(C)




4. Continuous Measurement Models

* We need a measurement function and a noise model
* Example: bearing to a landmark /: ho}#é

h(z,l) = atan2(l, — x,,l, — ;) 1 r”v |‘—\H II:‘
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Adding a noise model

* Generative model of measuremen z = h(x,l) + 1.
* Assuming Gaussian noise:

|

|
. ) =N(z:h(z.l).R) = exp ——||h(x.l) — 2
)= Nz, ), ) = — s p {3 Gz

p(z

2
R



Adding a noise model

* Generative model of measuremen z = h(x,l) + 1.
* Assuming Gaussian noise:

|
Pl ) = Nah(a, ), B) = —oes "x"{"”l' %) ””"}
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* Putting it together:

l l .
p(zle,l) = —= R exp { -5 |atan2(l, — xy,lp — xy) — 2
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Other sensor models

0.125 |- .
Approximated —
Measured —
0.1} |
;;:, 0.075 + H
=
R
B
8 0.05 | i
a
0.025 |- i
0 1 1 | | AI_

100 200 300 400 500
measured distance [cm]

Laser sensor

0.135 | o
Approximated +—
Measured —
0.1} o
0.075 |- 1
%‘
A
8 00| H
L =)
(aF
0.015 |- \ R
0 ’:ﬁ_i—} 1 \\IM 1 I
100 100 300 400 500

measured distance [cm]

Sonar sensor



5. Continuous Motion Models

e Similar for state transition, but we now have a motion model
* Motion model g(x,u) takes state x and control u

* Multivariate noise model with covariance Q:

(wesafon,u) = = exp { = lgGer,u) — ey}
P\Tt1|Tt, Ut ) = — EXP §y — < ||g\Tt,Ut) — Tt+1 Q
N



6. Simulating from a Continuous Bayes Net

(1

. Slice 1: A

a) Sample from p(x;)
b) Sense p(z,;|x;)
c) Sample from p(u;) )

. Slice 2: )

a) Act p(x;|x;, uy)
b) Sense p(z,|x,)

c) Sample from p(u 22 )

. Slice 3:

a) ...
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L Example: motion
model only

* The infamous
“banana density”

* Happens because
S . heading \theta

* Clearly non-
Gaussian!

10 meters



/. Sampling to Approximate Densities

* As banana distribution illustrates, densities can become arbitrarily
complex, even when noise models are Gaussian

e |ssue is nonlinear measurement and noise models
* One way out: Parzen window density estimation (mixtures!)

=21 13 04 19 51 6.2 (Wikipedia)

e Other way out: sampling!



Probability of Robot Location

P(Robot Location)

State space = 2D, infinite #states

P(X;_ |21



Sampling as Representation

P(Robot Location)




Sampling Advantages

e Arbitrary densities
 Memory = O(#samples)
* Only in “Typical Set”

* Great visualization tool !

* minus: Approximate



8. Importance Sampling

* Additionally use weights to represent a density

(X7, m"} ~ P(Xy_1| 280

* Generic importance sampling idea:
* We want to sample from p(x), but we don’t know how
 sample x” from g(x), which some way we can sample from
* give each sample x an importance weight equal to p(x)/q(x)



Importance Sampling

« Sample x{" from q(x)
* 7, = p(x)/g(x")




Example: Bayes law via importance sampling

{x®,yO~Prior(x,y), w,=P(Z|x®,y®) }




9. Particle Filters & Monte Carlo Localization

* Bayes filter using importance sampling for Bayes law
« First appeared in 70 s, re-discovered by Kitagawa,

* [sard & Blake rediscovered in computer vision, as CONDENSATION
* Monte Carlo Localization 1n robotics



Particles

* Each particle is a guess about where the robot might be
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1. Prediction Phase
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Motion Model
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2. Measurement Phase

P(Z|xy)

Sensor Model



3. Resampling Step
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Particle Filter Tracking

State X ny > \XD

v v v P
Measurement @ 71 @

Monte Carlo Approximation of Posterior:

P(X,1|Z" 1) &=p {Xt(z—)l? 7T§1—)1}7];\i1
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Bayes Filter and Particle Filter

Motion Model
Recursive Bayes Filter Equation: /

%

P(Xt|Zt) = kP (Z:| X}) / P(Xt\Xt_l)P(Xt_lth_l)
Xi—1

, Predictive Density
Monte Carlo Approximation:

P(X,|Z") ~ kP(Zi|X}) Z"f P(X X))




Particle Filter

Empirical predictive density = Mixture Model

)

O

m = P(Z] X{)

First appeared in 70's, re-discovered by Kitagawa, Isard, ...



Monte Carlo Localization

Sk—l weighted S ’k Sk

. e . e Lo
. ,l‘?”. - .l ) - * ..: '
. _meus AL H - L
AN » R L I 5
0 I - et
p .. N ' .: '0,\ o - '.:/fr. s

IR T
I 5ot d

Predict Weight Resample




Monte Carlo Localization (99
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10. Connection with Elimination Algorithm™

* In class, if time remains...



Summary

Continuous Densities

Gaussian Densities
Bayes Nets & Mixture Models

Cont. Measurement Models
Cont. Motion Models

e Simulating Cont. Bayes Nets
e Sampling as Approximation
* Importance Sampling

e Particle Filters and Monte Carlo
Localization

e Monte Carlo & Elimination



